LEADER 02202nam0 22004693i 450 001 VAN00265664 005 20240806101518.391 017 70$2N$a9783540391487 100 $a20231030d1988 |0itac50 ba 101 $aeng 102 $aDE 105 $a|||| ||||| 200 1 $aTwo-Parameter Martingales and Their Quadratic Variation$fPeter Imkeller 210 $aBerlin$cSpringer$d1988 215 $aiv, 177 p.$d24 cm 461 1$1001VAN00102250$12001 $aLecture notes in mathematics$1210 $aBerlin [etc.]$cSpringer$v1308 606 $a60-XX$xProbability theory and stochastic processes [MSC 2020]$3VANC020428$2MF 606 $a60E15$xInequalities; stochastic orderings [MSC 2020]$3VANC021557$2MF 606 $a60G07$xGeneral theory of stochastic processes [MSC 2020]$3VANC021239$2MF 606 $a60G42$xMartingales with discrete parameter [MSC 2020]$3VANC021396$2MF 606 $a60G44$xMartingales with continuous parameter [MSC 2020]$3VANC020011$2MF 606 $a60G48$xGeneralizations of martingales [MSC 2020]$3VANC021486$2MF 606 $a60G55$xPoint processes (e.g., Poisson, Cox, Hawkes processes) [MSC 2020]$3VANC024268$2MF 606 $a60G60$xRandom fields [MSC 2020]$3VANC023477$2MF 606 $a60H05$xStochastic integrals [MSC 2020]$3VANC020013$2MF 610 $aCalculus$9KW:K 610 $aMartingales$9KW:K 610 $aParameter$9KW:K 610 $aQuadratic variation$9KW:K 610 $aStochastic Calculus$9KW:K 610 $aVariation$9KW:K 620 $dBerlin$3VANL000066 700 1$aImkeller$bPeter$3VANV076537$057607 712 $aSpringer $3VANV108073$4650 801 $aIT$bSOL$c20241115$gRICA 856 4 $uhttps://doi.org/10.1007/BFb0078096$zE-book ? Accesso al full-text attraverso riconoscimento IP di Ateneo, proxy e/o Shibboleth 899 $aBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$1IT-CE0120$2VAN08 912 $fN 912 $aVAN00265664 950 $aBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$d08DLOAD e-book 7012 $e08eMF7012 20231031 996 $aTwo-parameter martingales and their quadratic variation$978540 997 $aUNICAMPANIA