LEADER 02162nam0 22004933i 450 001 VAN00264210 005 20240806101514.610 017 70$2N$a9783642514470 100 $a20231002r19761987 |0itac50 ba 101 $aeng 102 $aDE 105 $a|||| ||||| 200 1 $aIntroduction to modular forms$fSerge Lang 205 $aRepr 210 $aBerlin$cSpringer$d1976 [stampa 1987] 215 $aix, 265 p.$cill.$d24 cm 410 1$1001VAN00024107$12001 $aGrundlehren der mathematischen Wissenschaften$eA series of comprehensive texts in mathematics$1210 $aBerlin [etc.]$cSpringer$v222 606 $a11-XX$xNumber theory [MSC 2020]$3VANC019688$2MF 606 $a11F12$xAutomorphic forms, one variable [MSC 2020]$3VANC021440$2MF 606 $a11R32$xGalois theory [MSC 2020]$3VANC021808$2MF 606 $a11R34$xGalois cohomology [MSC 2020]$3VANC021892$2MF 606 $a11S40$xZeta functions and $L$-functions [MSC 2020]$3VANC021786$2MF 606 $a14-XX$xAlgebraic geometry [MSC 2020]$3VANC019702$2MF 606 $a14G20$xLocal ground fields in algebraic geometry [MSC 2020]$3VANC021831$2MF 606 $a14G25$xGlobal ground fields [MSC 2020]$3VANC020781$2MF 610 $aDerivative$9KW:K 610 $aDimension$9KW:K 610 $aDistribution$9KW:K 610 $aHomogenization$9KW:K 610 $aIntegrals$9KW:K 610 $aModular forms$9KW:K 610 $aRiemann surfaces$9KW:K 610 $aZeta functions$9KW:K 620 $dBerlin$3VANL000066 700 1$aLang$bSerge$f1927-2005$3VANV014141$01160 712 $aSpringer $3VANV108073$4650 801 $aIT$bSOL$c20241115$gRICA 856 4 $uhttps://doi.org/10.1007/978-3-642-51447-0$zE-book ? Accesso al full-text attraverso riconoscimento IP di Ateneo, proxy e/o Shibboleth 899 $aBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$1IT-CE0120$2VAN08 912 $fN 912 $aVAN00264210 950 $aBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$d08DLOAD e-book 6883 $e08eMF6883 20231019 996 $aIntroduction to modular forms$979727 997 $aUNICAMPANIA