LEADER 02142nam0 22004573i 450 001 VAN00262739 005 20240806101510.175 017 70$2N$a9783540387176 100 $a20230831d1983 |0itac50 ba 101 $aeng 102 $aDE 105 $a|||| ||||| 200 1 $aGroup Rings of Finite Groups Over p-adic Integers$fWilhelm Plesken 210 $aBerlin$cSpringer$d1983 215 $avi, 154 p.$d24 cm 461 1$1001VAN00102250$12001 $aLecture notes in mathematics$1210 $aBerlin [etc.]$cSpringer$v1026 606 $a16H05$xSeparable algebras (e.g., quaternion algebras, Azumaya algebras, etc.) [MSC 2020]$3VANC025101$2MF 606 $a16S34$xGroup rings, Laurent polynomial rings (associative algebraic aspects) [MSC 2020]$3VANC028265$2MF 606 $a16Uxx$xConditions on elements [MSC 2020]$3VANC031389$2MF 606 $a20-XX$xGroup theory and generalizations [MSC 2020]$3VANC019715$2MF 606 $a20C05$xGroup rings of finite groups and their modules (group-theoretic aspects) [MSC 2020]$3VANC022062$2MF 606 $a20C11$x$p$-adic representations of finite groups [MSC 2020]$3VANC024177$2MF 606 $a20C20$xModular representations and characters [MSC 2020]$3VANC022114$2MF 610 $aFinite Groups$9KW:K 610 $aGroup algebra$9KW:K 610 $aGroups$9KW:K 610 $aIntegers$9KW:K 610 $aPrime$9KW:K 610 $aRings$9KW:K 610 $ap-adic numbers$9KW:K 620 $dBerlin$3VANL000066 700 1$aPlesken$bWilhelm$3VANV217047$058209 712 $aSpringer $3VANV108073$4650 801 $aIT$bSOL$c20240906$gRICA 856 4 $uhttps://doi.org/10.1007/BFb0071558$zE-book ? Accesso al full-text attraverso riconoscimento IP di Ateneo, proxy e/o Shibboleth 899 $aBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$1IT-CE0120$2VAN08 912 $fN 912 $aVAN00262739 950 $aBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$d08CONS e-book 6529 $e08eMF6529 20230905 996 $aGroup rings of finite groups over p-adic integers$980950 997 $aUNICAMPANIA