LEADER 01628nam 2200517 450 001 9910296987303321 005 20200520144314.0 010 $a0-12-802781-9 035 $a(CKB)3710000000491338 035 $a(EBL)4012318 035 $a(SSID)ssj0001634665 035 $a(PQKBManifestationID)16386578 035 $a(PQKBTitleCode)TC0001634665 035 $a(PQKBWorkID)14950232 035 $a(PQKB)11413520 035 $a(Au-PeEL)EBL4012318 035 $a(CaPaEBR)ebr11119170 035 $a(CaONFJC)MIL840790 035 $a(OCoLC)932329903 035 $a(MiAaPQ)EBC4012318 035 $a(EXLCZ)993710000000491338 100 $a20151130h20162016 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aBecoming a global chief security executive officer $ea how to guide for next generation security leaders /$fRoland Cloutier 210 1$aKidlington, Oxford ;$aWaltham, Massachusetts :$cButterworth-Heinemann, an imprint of Elsevier,$d2016. 210 4$d©2016 215 $a1 online resource (0 p.) 300 $aIncludes index. 311 $a0-12-802782-7 606 $aSecurity systems$xManagement 606 $aBusiness enterprises$xSecurity measures 615 0$aSecurity systems$xManagement. 615 0$aBusiness enterprises$xSecurity measures. 676 $a658.155 700 $aCloutier$b Roland$0876216 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910296987303321 996 $aBecoming a global chief security executive officer$91956725 997 $aUNINA LEADER 02028nam2 22004333i 450 001 VAN00261226 005 20250725114648.250 017 70$2N$a9789811667602 100 $a20230712d2022 |0itac50 ba 101 $aeng 102 $aSG 105 $a|||| ||||| 181 $ai$b e 182 $ab 183 $acr 200 1 $aˆ4: ‰Probiotics in Neurodegenerative Disorders$feditors Indu Pal Kaur (Editor-in-Chief) ... [et al.] 210 $aSingapore$cSpringer$d2022 215 $aXII, 254 p.$cill.$d24 cm 461 1$1001VAN00243955$12001 $aProbiotic Research in Therapeutics$feditors Indu Pal Kaur (Editor-in-Chief), Parneet Kaur Deol$1210 $aCham$cSpringer$1215 $avolumi$cill.$d24 cm$v4 620 $aSG$dSingapore$3VANL000061 676 $a660.6$cBiotecnologia. Microbiologia applicata$v22 676 $a615.1$cFarmacologia. Farmaci. Farmacia$v22 676 $a615.19$cChimica farmaceutica. Tecnologia farmaceutica. Chimica medica$v22 676 $a543$cChimica analitica$v22 676 $a610.28$cIngegneria biomedica. Biomateriali$v22 676 $a615.5$cFarmacoterapia$v22 702 1$aKaur$bIndu P.$3VANV199195 712 $aSpringer $3VANV108073$4650 790 1$aKaur, Indu Pal$zKaur, Indu P.$3VANV199196 790 1$aKaur, I.P.$zKaur, Indu P.$3VANV202090 790 1$aKaur, I. P.$zKaur, Indu P.$3VANV202091 801 $aIT$bSOL$c20250801$gRICA 856 4 $uhttps://link.springer.com/book/10.1007/978-981-16-6760-2$zE-book ? Accesso al full-text attraverso riconoscimento IP di Ateneo, proxy e/o Shibboleth 899 $aBIBLIOTECA DEL DIPARTIMENTO DI SCIENZE E TECNOLOGIE AMBIENTALI BIOLOGICHE E FARMACEUTICHE$1IT-CE0101$2VAN17 912 $fN 912 $aVAN00261226 950 $aBIBLIOTECA DEL DIPARTIMENTO DI SCIENZE E TECNOLOGIE AMBIENTALI BIOLOGICHE E FARMACEUTICHE$d17CONS e-book 2306 $e17BIB2306/94 94 20230712 996 $aProbiotics in Neurodegenerative Disorders$93393761 997 $aUNICAMPANIA LEADER 05335nam 22007215 450 001 9911031662903321 005 20251001130449.0 010 $a3-031-84702-4 024 7 $a10.1007/978-3-031-84702-8 035 $a(CKB)41521030000041 035 $a(MiAaPQ)EBC32323734 035 $a(Au-PeEL)EBL32323734 035 $a(DE-He213)978-3-031-84702-8 035 $a(OCoLC)1547906670 035 $a(EXLCZ)9941521030000041 100 $a20251001d2025 u| 0 101 0 $aeng 135 $aur||||||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aStatistical Models and Learning Methods for Complex Data /$fedited by Giuseppe Giordano, Michele La Rocca, Marcella Niglio, Marialuisa Restaino, Maurizio Vichi 205 $a1st ed. 2025. 210 1$aCham :$cSpringer Nature Switzerland :$cImprint: Springer,$d2025. 215 $a1 online resource (312 pages) 225 1 $aStudies in Classification, Data Analysis, and Knowledge Organization,$x2198-3321 311 08$a3-031-84701-6 327 $a- Exploring latent evolving ability in test equating and its effects on final rankings -- Hidden Markov and related discrete latent variable models An application to compositional data -- An application of Natural Language Processing Analysis on TripAdvisor Reviews -- Modelling football players field position via mixture of Gaussians with flexible weights -- Estimation Issues in Multivariate Panel Data -- Testing linearity in the single functional index model for dependent data -- A multi-step approach for streamflow classification -- Identification of misogynistic accounts on Twitter through Graph Convolutional Networks -- Topic modeling of publication activity in Hungary and Poland in the fields of economics, finance, and business -- Circular kernel classification with errors-in-variables -- Classification Trees Applied to Time Lagged Data to Improve Quality in Official Statistics -- Trimmed factorial k-means a clustering application to a cookies dataset_Farné and Camillo -- Visualization of Proximity and Role-based Embeddings in a Regional Labour Flow Network -- Bridging the Gap Investigating Correlation Clustering and Manifold Learning Connections -- Improving Performance in Neural Networks by Dendrite-Activated Connection -- Regression models with compositional regressors in case of structural zeros -- Multi-Dimensional Robinson Dissimilarities -- Composite selection criteria for the number of components of a finite mixture for ordinal data -- Clustering of Italian higher education institutions based on a destination?specific approach -- Analyzing Italian crime data using matrix-variate hidden Markov models. 330 $aThis book on statistical models and learning methods for complex data comprises a selection of peer-reviewed post-conference papers presented at the 14th Scientific Meeting of the Classification and Data Analysis Group of the Italian Statistical Society (CLADAG 2023), held in Salerno, Italy, September 11?13, 2023. The contributions span a variety of topics, including different approaches to clustering and classification, multidimensional data analysis, panel data, social networks, time series, statistical inference, and mixture models. These methodologies are applied to a range of empirical domains such as economics, finance, hydrology, the social sciences, education, and sports. Organized biennially by international scientific committees, the CLADAG meetings advance methodological research in multivariate statistics, with a strong focus on data analysis and classification. They facilitate the exchange of ideas in these fields and promote the dissemination of concepts, numerical methods, algorithms, and computational and applied results. Chapter "Identification of misogynistic accounts on Twitter through Graph Convolutional Networks" is available open access under a Creative Commons Attribution 4.0 International License via link.springer.com. 410 0$aStudies in Classification, Data Analysis, and Knowledge Organization,$x2198-3321 606 $aMathematical statistics$xData processing 606 $aStatistics 606 $aStatistics 606 $aData mining 606 $aQuantitative research 606 $aStatistics and Computing 606 $aStatistical Theory and Methods 606 $aApplied Statistics 606 $aData Mining and Knowledge Discovery 606 $aData Analysis and Big Data 615 0$aMathematical statistics$xData processing. 615 0$aStatistics. 615 0$aStatistics. 615 0$aData mining. 615 0$aQuantitative research. 615 14$aStatistics and Computing. 615 24$aStatistical Theory and Methods. 615 24$aApplied Statistics. 615 24$aData Mining and Knowledge Discovery. 615 24$aData Analysis and Big Data. 676 $a519.5 700 $aGiordano$b Giuseppe$09404 701 $aLa Rocca$b Michele$0116893 701 $aNiglio$b Marcella$0614197 701 $aRestaino$b Marialuisa$01460491 701 $aVichi$b Maurizio$0117728 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9911031662903321 996 $aStatistical Models and Learning Methods for Complex Data$94444160 997 $aUNINA