LEADER 02192nam0 22004693i 450 001 VAN00261163 005 20250624124427.987 017 70$2N$a9783540348634 100 $a20230711d1979 |0itac50 ba 101 $aeng 102 $aDE 105 $a|||| ||||| 200 1 $aEquational Compactness in Rings$eWith Applications to the Theory of Topological Rings$fDavid K. Haley 210 $aBerlin$cSpringer$d1979 215 $aiii, 167 p.$d24 cm 461 1$1001VAN00102250$12001 $aLecture notes in mathematics$1210 $aBerlin [etc.]$cSpringer$v745 606 $a03C60$xModel-theoretic algebra [MSC 2020]$3VANC023964$2MF 606 $a13Jxx$xTopological rings and modules [MSC 2020]$3VANC022353$2MF 606 $a13Lxx$xApplications of logic to commutative algebra [MSC 2020]$3VANC028775$2MF 606 $a16-XX$xAssociative rings and algebras [MSC 2020]$3VANC019734$2MF 606 $a16P10$xFinite rings and finite-dimensional associative algebras [MSC 2020]$3VANC022013$2MF 606 $a16P60$xChain conditions on annihilators and summands: Goldie-type conditions, Krull dimension (associative rings and algebras) [MSC 2020]$3VANC023711$2MF 606 $a16W80$xTopological and ordered rings and modules [MSC 2020]$3VANC037379$2MF 610 $aCompactifications$9KW:K 610 $aCompactness$9KW:K 610 $aEquations$9KW:K 610 $aFrame$9KW:K 610 $aMinimum$9KW:K 610 $aModels$9KW:K 610 $aRings$9KW:K 610 $aTopological rings$9KW:K 620 $dBerlin$3VANL000066 700 1$aHaley$bDavid K.$3VANV215396$058978 712 $aSpringer $3VANV108073$4650 801 $aIT$bSOL$c20250829$gRICA 856 4 $uhttps://doi.org/10.1007/BFb0062801$zE-book ? Accesso al full-text attraverso riconoscimento IP di Ateneo, proxy e/o Shibboleth 899 $aBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$1IT-CE0120$2VAN08 912 $fN 912 $aVAN00261163 950 $aBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$d08DLOAD e-book 6198 $e08eMF6198 20230725 996 $aEquational compactness in rings$980752 997 $aUNICAMPANIA