LEADER 02508nam0 22005653i 450 001 VAN00260789 005 20240806101503.209 017 70$2N$a9783031151279 100 $a20230705d2022 |0itac50 ba 101 $aeng 102 $aCH 105 $a|||| ||||| 200 1 $aConvex Cones$eGeometry and Probability$fRolf Schneider 210 $aCham$cSpringer$d2022 215 $ax, 347 p.$cill.$d24 cm 461 1$1001VAN00102250$12001 $aLecture notes in mathematics$1210 $aBerlin [etc.]$cSpringer$v2319 606 $a51-XX$xGeometry [MSC 2020]$3VANC019810$2MF 606 $a52-XX$xConvex and discrete geometry [MSC 2020]$3VANC019811$2MF 606 $a52A22$xRandom convex sets and integral geometry (aspects of convex geometry) [MSC 2020]$3VANC022480$2MF 606 $a52C35$xArrangements of points, flats, hyperplanes (aspects of discrete geometry) [MSC 2020]$3VANC028900$2MF 606 $a60-XX$xProbability theory and stochastic processes [MSC 2020]$3VANC020428$2MF 606 $a60Dxx$xGeometric probability and stochastic geometry [MSC 2020]$3VANC020491$2MF 610 $aCentral hyperplane tessellation$9KW:K 610 $aCoconvex set$9KW:K 610 $aConic intrinsic volume$9KW:K 610 $aConic kinematic formula$9KW:K 610 $aConic support measures$9KW:K 610 $aConvex cones$9KW:K 610 $aCover-Efron cone$9KW:K 610 $aGrassmann angle$9KW:K 610 $aHigh dimensions$9KW:K 610 $aMaster Steiner formula$9KW:K 610 $aPolarity$9KW:K 610 $aPolyhedral Gauss-Bonnet$9KW:K 610 $aPolyhedral tube formula$9KW:K 610 $aPolyhedron$9KW:K 610 $aRandom cone$9KW:K 610 $aSchläfli cone$9KW:K 610 $aValuation$9KW:K 620 $aCH$dCham$3VANL001889 700 1$aSchneider$bRolf$3VANV040385$034894 712 $aSpringer $3VANV108073$4650 801 $aIT$bSOL$c20241115$gRICA 856 4 $uhttps://doi.org/10.1007/978-3-031-15127-9$zE-book ? Accesso al full-text attraverso riconoscimento IP di Ateneo, proxy e/o Shibboleth 912 $fN 912 $aVAN00260789 950 $aBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$d08CONS e-book $e08LNM2319 20230705 950 $aBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$d08DLOAD e-Book 8702 $e08eMF8702 20240610 996 $aConvex Cones$93390114 997 $aUNICAMPANIA