LEADER 01447nam 2200373Ka 450 001 9910697305903321 005 20080819160311.0 035 $a(CKB)5470000002387878 035 $a(OCoLC)244109665 035 $a(EXLCZ)995470000002387878 100 $a20080819d1992 ua 0 101 0 $aeng 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aFoundations of a security policy for use of the National Research and Educational Network$b[electronic resource] /$fArthur E. Oldehoeft 210 1$aGaithersburg, Md. :$cU.S. Dept. of Commerce, National Institute of Standards and Technology,$d[1992] 215 $aviii, 47 pages $cdigital, PDF file 225 1 $aNISTIR ;$v4734 300 $aTitle from title screen (viewed on Aug. 19, 2008). 300 $a"February 1992." 606 $aNational Research and Education Network (Computer network) 606 $aInternet$xSecurity measures 606 $aComputer networks$xSecurity measures$zUnited States 615 0$aNational Research and Education Network (Computer network) 615 0$aInternet$xSecurity measures. 615 0$aComputer networks$xSecurity measures 700 $aOldehoeft$b Arthur E$0632094 801 0$bGPO 801 1$bGPO 906 $aBOOK 912 $a9910697305903321 996 $aFoundations of a security policy for use of the National Research and Educational Network$93504103 997 $aUNINA LEADER 02170nam0 22004453i 450 001 VAN00255899 005 20240806101445.628 017 70$2N$a9783540470106 100 $a20230316d1973 |0itac50 ba 101 $aeng 102 $aDE 105 $a|||| ||||| 200 1 $aˆThe ‰Metrical Theory of Jacobi-Perron Algorithm$fFritz Schweiger 210 $aBerlin$cSpringer$d1973 215 $a111 p.$d24 cm 461 1$1001VAN00102250$12001 $aLecture notes in mathematics$1210 $aBerlin [etc.]$cSpringer$v334 606 $a11-XX$xNumber theory [MSC 2020]$3VANC019688$2MF 606 $a11A63$xRadix representation; digital problems [MSC 2020]$3VANC021429$2MF 606 $a11J70$xContinued fractions and generalizations [MSC 2020]$3VANC021430$2MF 606 $a11K16$xNormal numbers, radix expansions, Pisot numbers, Salem numbers, good lattice points, etc. [MSC 2020]$3VANC035407$2MF 606 $a28A10$xReal- or complex-valued set functions [MSC 2020]$3VANC022385$2MF 606 $a28A75$xLength, area, volume, other geometric measure theory [MSC 2020]$3VANC021494$2MF 606 $a28C10$xSet functions and measures on topological groups, Haar measures, invariant measures [MSC 2020]$3VANC021612$2MF 606 $a28D05$xMeasure-preserving transformations [MSC 2020]$3VANC022530$2MF 610 $aAlgorithms$9KW:K 610 $aInvariants$9KW:K 610 $aJacobi-Perron algorithm$9KW:K 610 $aProofs$9KW:K 610 $aTheorem$9KW:K 620 $dBerlin$3VANL000066 700 1$aSchweiger$bFritz$3VANV040435$0441282 712 $aSpringer $3VANV108073$4650 801 $aIT$bSOL$c20250221$gRICA 856 4 $uhttps://doi.org/10.1007/BFb0059845$zE-book ? Accesso al full-text attraverso riconoscimento IP di Ateneo, proxy e/o Shibboleth 899 $aBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$1IT-CE0120$2VAN08 912 $fN 912 $aVAN00255899 950 $aBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$d08DLOAD e-book 5744 $e08eMF5744 20230328 996 $aMetrical theory of Jacobi-Perron algorithm$981429 997 $aUNICAMPANIA