LEADER 02251nam0 22005413i 450 001 VAN00255441 005 20240806101444.394 017 70$2N$a9783540369356 100 $a20230228d1971 |0itac50 ba 101 $aeng 102 $aDE 105 $a|||| ||||| 200 1 $aTopics in Multiplicative Number Theory$fHugh L. Montgomery 210 $aBerlin$cSpringer$d1971 215 $aviii, 178 p.$cill.$d24 cm 461 1$1001VAN00102250$12001 $aLecture notes in mathematics$1210 $aBerlin [etc.]$cSpringer$v227 606 $a11-XX$xNumber theory [MSC 2020]$3VANC019688$2MF 606 $a11L07$xEstimates on exponential sums [MSC 2020]$3VANC021824$2MF 606 $a11L15$xWeyl sums [MSC2020]$3VANC037376$2MF 606 $a11M06$x$\zeta (s)$ and $L(s, \chi)$ [MSC 2020]$3VANC019707$2MF 606 $a11N05$xDistribution of primes [MSC 2020]$3VANC020462$2MF 606 $a11N25$xDistribution of integers with specified multiplicative constraints [MSC 2020]$3VANC037377$2MF 606 $a11N35$xSieves [MSC 2020]$3VANC020784$2MF 606 $a11N36$xApplications of sieve methods [MSC 2020]$3VANC035324$2MF 610 $aArithmetic$9KW:K 610 $aBoundary Element Methods$9KW:K 610 $aCharacter$9KW:K 610 $aDistribution$9KW:K 610 $aForms$9KW:K 610 $aFunctions$9KW:K 610 $aLemma$9KW:K 610 $aMean value theorem$9KW:K 610 $aNumber theory$9KW:K 610 $aPrime$9KW:K 610 $aPrime numbers$9KW:K 610 $aResidues$9KW:K 610 $aSieve$9KW:K 620 $dBerlin$3VANL000066 700 1$aMontgomery$bHugh L.$3VANV043343$057521 712 $aSpringer $3VANV108073$4650 801 $aIT$bSOL$c20240906$gRICA 856 4 $uhttps://doi.org/10.1007/BFb0060851$zE-book ? Accesso al full-text attraverso riconoscimento IP di Ateneo, proxy e/o Shibboleth 899 $aBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$1IT-CE0120$2VAN08 912 $fN 912 $aVAN00255441 950 $aBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$d08CONS e-book 5599 $e08eMF5599 20230313 996 $aTopics in multiplicative number theory$981558 997 $aUNICAMPANIA