LEADER 02205nam0 22004813i 450 001 VAN00255417 005 20240806101444.301 017 70$2N$a9783540368809 100 $a20230228d1971 |0itac50 ba 101 $aeng 102 $aDE 105 $a|||| ||||| 200 1 $aˆThe ‰Concordance-Homotopy Groups of Geometric Automorphism Groups$fPeter L. Antonelli, Dan Burghelea, Peter J. Kahn 210 $aBerlin$cSpringer$d1971 215 $ax, 140 p.$d24 cm 461 1$1001VAN00102250$12001 $aLecture notes in mathematics$1210 $aBerlin [etc.]$cSpringer$v215 606 $a55P15$xClassification of homotopy type [MSC 2020]$3VANC033621$2MF 606 $a57-XX$xManifolds and cell complexes [MSC 2020]$3VANC019671$2MF 606 $a57N65$xAlgebraic topology of manifolds [MSC 2020]$3VANC024064$2MF 606 $a57N70$xCobordism and concordance in topological manifolds [MSC 2020]$3VANC037371$2MF 606 $a57Q60$xCobordism and concordance in PL-topology [MSC 2020]$3VANC037372$2MF 606 $a57R19$xAlgebraic topology on manifolds and differential topology [MSC 2020]$3VANC024168$2MF 610 $aAutomorphism groups$9KW:K 610 $aGeometric Automorphism Groups$9KW:K 610 $aGroups$9KW:K 610 $aHomotopy$9KW:K 610 $aHomotopy Groups$9KW:K 610 $aMorphism$9KW:K 610 $aProofs$9KW:K 610 $aTheorem$9KW:K 620 $dBerlin$3VANL000066 700 1$aAntonelli$bPeter L.$3VANV208434$054081 701 1$aBurghelea$bDan$3VANV208435$045451 701 1$aKahn$bPeter J.$3VANV208437$054082 712 $aSpringer $3VANV108073$4650 801 $aIT$bSOL$c20241115$gRICA 856 4 $uhttps://doi.org/10.1007/BFb0061176$zE-book ? Accesso al full-text attraverso riconoscimento IP di Ateneo, proxy e/o Shibboleth 899 $aBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$1IT-CE0120$2VAN08 912 $fN 912 $aVAN00255417 950 $aBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$d08DLOAD -book 5589 $e08eMF5589 20230313 996 $aConcordance-homotopy groups of geometric automorphism groups$981186 997 $aUNICAMPANIA