LEADER 03349nam0 22006373i 450 001 VAN00250540 005 20240806101424.588 017 70$2N$a9781071603321 100 $a20220922d2020 |0itac50 ba 101 $aeng 102 $aUS 105 $a|||| ||||| 200 1 $aModulation Spaces$eWith Applications to Pseudodifferential Operators and Nonlinear Schrödinger Equations$fÁrpád Bényi, Kasso A. Okoudjou 210 $aNew York$cBirkhäuser$cSpringer$d2020 215 $axvi, 169 p.$cill.$d24 cm 410 1$1001VAN00044485$12001 $aApplied and numerical harmonic analysis$1210 $aBoston [etc.]$cBirkhäuser$d1997- 500 1$3VAN00250542$aModulation Spaces$92910423 606 $a35-XX$xPartial differential equations [MSC 2020]$3VANC019763$2MF 606 $a35Q55$xNLS equations (nonlinear Schroedinger equations) [MSC 2020]$3VANC022712$2MF 606 $a35S05$xPseudodifferential operators as generalizations of partial differential operators [MSC 2020]$3VANC019841$2MF 606 $a42-XX$xHarmonic analysis on Euclidean spaces [MSC 2020]$3VANC019851$2MF 606 $a42B15$xMultipliers for harmonic analysis in several variables [MSC 2020]$3VANC022598$2MF 606 $a42B35$xFunction spaces arising in harmonic analysis [MSC 2020]$3VANC023518$2MF 606 $a42B37$xHarmonic analysis and PDEs [MSC 2020]$3VANC033548$2MF 606 $a46E30$xSpaces of measurable functions (Lp-spaces, Orlicz spaces, Köthe function spaces, Lorentz spaces, rearrangement invariant spaces, ideal spaces, etc) [MSC 2020]$3VANC028800$2MF 606 $a46E35$xSobolev spaces and other spaces of ?smooth? functions, embedding theorems, trace theorems [MSC 2020]$3VANC020009$2MF 606 $a47-XX$xOperator theory [MSC 2020]$3VANC019759$2MF 606 $a47G30$xPseudodifferential operators [MSC 2020]$3VANC029207$2MF 610 $aBesov Spaces$9KW:K 610 $aFoundations of time-frequency analysis$9KW:K 610 $aFunctional Analysis$9KW:K 610 $aGabor frames$9KW:K 610 $aHarmonic analysis$9KW:K 610 $aModulation spaces$9KW:K 610 $aNonlinear Partial Differential Equations$9KW:K 610 $aNonlinear Schrödinger Equations$9KW:K 610 $aNonlinear modulation spaces$9KW:K 610 $aPartial Differential Equations$9KW:K 610 $aPseudodifferential operators$9KW:K 610 $aReal analysis$9KW:K 610 $aTime?frequency analysis$9KW:K 610 $aTriebel?Lizorkin spaces$9KW:K 610 $aUnweighted modulation spaces$9KW:K 620 $aUS$dNew York$3VANL000011 700 1$aBényi$bÁrpád$3VANV204672$0927211 701 1$aOkoudjou$bKasso A.$3VANV204195$01255198 712 $aBirkhäuser $3VANV108193$4650 712 $aSpringer $3VANV108073$4650 801 $aIT$bSOL$c20250606$gRICA 856 4 $uhttp://doi.org/10.1007/978-1-0716-0332-1$zE-book ? Accesso al full-text attraverso riconoscimento IP di Ateneo, proxy e/o Shibboleth 899 $aBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$1IT-CE0120$2VAN08 912 $fN 912 $aVAN00250540 950 $aBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$d08DLOAD e-book 5010 $e08eMF5010 20220922 996 $aModulation Spaces$92910423 997 $aUNICAMPANIA LEADER 01250nam2 22002771i 450 001 VAN00045625 005 20251119022943.455 100 $a20060526d1961 |0itac50 ba 101 $aita 102 $aIT 105 $a|||| ||||| 200 1 $aˆ1: I ‰principi generali$fEnzo Cataldi 210 $aRoma$cJandi Sapi$d1961 215 $aXVI, 341 p.$d24 cm 316 $aFondo Raffaele Papa$5IT-IT-CE0105 CONSIX.Eb.32 461 1$1001VAN00045623$12001 $aˆIl ‰sistema giuridico dell'assicurazione contro gli infortuni sul lavoro e le malattie professionali$fEnzo Cataldi$1210 $aRoma$cJandi Sapi$d1961-1965$1215 $a3 v.$d24 cm.$v1 620 $dRoma$3VANL000360 700 1$aCataldi$bEnzo$3VANV036611$0229306 712 $aJandi Sapi $3VANV108646$4650 801 $aIT$bSOL$c20251121$gRICA 856 4 $u/sebina/repository/catalogazione/documenti/FP 28066 _indice_.pdf$zFP 28066 _indice_.pdf 899 $aBIBLIOTECA DEL DIPARTIMENTO DI GIURISPRUDENZA$1IT-CE0105$2VAN00 912 $aVAN00045625 950 $aBIBLIOTECA DEL DIPARTIMENTO DI GIURISPRUDENZA$d00CONS IX.Eb.32 $e00FP 28066 20060922 Fondo Raffaele Papa 996 $aPrincipi generali$91403934 997 $aUNICAMPANIA