LEADER 01375nam 2200373Ia 450 001 996385523803316 005 20200824132318.0 035 $a(CKB)4940000000079321 035 $a(EEBO)2240849314 035 $a(OCoLC)ocm12875966e 035 $a(OCoLC)12875966 035 $a(EXLCZ)994940000000079321 100 $a19851205d1666 uy | 101 0 $alat 135 $aurbn||||a|bb| 200 10$aDe principiis & ratiocinatione geometrarum$b[electronic resource] $eubi oftenditur incertitudinem falsitatemq; non minorem inesse scriptis eorum, quam scriptis physicorum & ethicorum. /$fContra fastun professorum geometriae 210 $aLondini, $cApud Andream Crooke in Coemiterio D. Pauli sub signo Draconis viridis.$d1666 215 $a[6], 79 p., [5] leaves of plates $cill 300 $aDedication signed: Tho. Hobbes. 300 $aErrata: p. [6]. 300 $aItem at reel 148:10 identified as Wing H2270 (number cancelled). 300 $aReproductions of original in Harvard University Libraries. 330 $aeebo-0062 606 $aGeometry$vEarly works to 1800 615 0$aGeometry 700 $aHobbes$b Thomas$f1588-1679.$0140545 801 0$bEAA 801 1$bEAA 801 2$bm/c 801 2$bWaOLN 906 $aBOOK 912 $a996385523803316 996 $aDe principiis & ratiocinatione geometrarum$92411484 997 $aUNISA LEADER 02470nam0 22005773i 450 001 VAN00249709 005 20240806101420.736 017 70$2N$a9783030382193 100 $a20220907d2020 |0itac50 ba 101 $aeng 102 $aCH 105 $a|||| ||||| 200 1 $aReal and Functional Analysis$fVladimir I. Bogachev, Oleg G. Smolyanov 210 $aCham$cSpringer$d2020 215 $axvi, 586 p.$cill.$d24 cm 410 1$1001VAN00124545$12001 $aMoscow Lectures$1210 $aCham [etc.]$cSpringer$d2018-$v4 500 1$3VAN00249710$aDeystvitel'nyy i funktsional'nyy analiz$92910388 606 $a26-XX$xReal functions [MSC 2020]$3VANC019778$2MF 606 $a28-XX$xMeasure and integration [MSC 2020]$3VANC019878$2MF 606 $a46-XX$xFunctional analysis [MSC 2020]$3VANC019764$2MF 606 $a47-XX$xOperator theory [MSC 2020]$3VANC019759$2MF 610 $aAbel theorem$9KW:K 610 $aAlgebraic curves$9KW:K 610 $aAlgebro-geometric solutions of KP$9KW:K 610 $aBaker-Akhiezer function$9KW:K 610 $aConformal mappings to disk$9KW:K 610 $aDispersionless 2D Toda hierarchy$9KW:K 610 $aFuchsian groups$9KW:K 610 $aHarmonic Functions$9KW:K 610 $aKadomtsev-Petviashvili (KP) hierarchy$9KW:K 610 $aMeromorphic functions$9KW:K 610 $aModuli of Riemann surfaces$9KW:K 610 $aRiemann surfaces$9KW:K 610 $aRiemann theorem$9KW:K 610 $aRiemann-Roch Theorem$9KW:K 610 $aTheta functions$9KW:K 610 $aWeierstrass points$9KW:K 620 $aCH$dCham$3VANL001889 700 1$aBogachev$bVladimir I.$3VANV056690$062159 701 1$aSmolyanov$bOleg G.$3VANV095178$0767347 712 $aSpringer $3VANV108073$4650 790 1$aBogachev, V. I.$zBogachev, Vladimir I.$3VANV056703 790 1$aBogachev, V.I.$zBogachev, Vladimir I.$3VANV061899 801 $aIT$bSOL$c20250606$gRICA 856 4 $uhttp://doi.org/10.1007/978-3-030-38219-3$zE-book ? Accesso al full-text attraverso riconoscimento IP di Ateneo, proxy e/o Shibboleth 899 $aBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$1IT-CE0120$2VAN08 912 $fN 912 $aVAN00249709 950 $aBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$d08DLOAD e-book 4822 $e08eMF4822 20220907 996 $aDeystvitel'nyy i funktsional'nyy analiz$92910388 997 $aUNICAMPANIA