LEADER 58384nac# 2204213 i 450 001 VAN0023579 005 20240716124627.814 011 $a0072-5285 017 70$20$a21975612 100 $a20040913a1950 |0itac50 ba 102 $aUS 105 $a|||| ||||| 110 $ab|||||||||| 200 1 $aGraduate texts in mathematics 210 $aNew York [etc.]$cSpringer$d1950- 463 1$1001VAN0268523$12001 $aIntroduction to Axiomatic Set Theory$fGaisi Takeuti, Wilson M. Zaring$1205 $a2. ed$1210 $aNew York$cSpringer$d1982$1215 $ax, 246 p.$cill.$d24 cm$v1 463 1$1001VAN0267603$12001 $aIntroduction to Axiomatic Set Theory$fGaisi Takeuti, Wilson M. Zaring$1210 $aNew York$cSpringer$d1971$1215 $avii, 251 p.$cill.$d24 cm$v1 463 1$1001VAN0267633$12001 $aTopological Vector Spaces$fH. H. Schaefer$1210 $aNew York$cSpringer$d1971$1215 $axi, 296 p.$cill.$d24 cm$v3 463 1$1001VAN0267740$12001 $aAxiomatic Set Theory$fG. Takeuti, W. M. Zaring$1210 $aNew York$cSpringer-Verlag$d1973$1215 $a238 p.$cill.$d24 cm$v8 463 1$1001VAN0267723$12001 $aˆA ‰Course in Simple-Homotopy Theory$fMarshall M. Cohen$1210 $aNew York$cSpringer-Verlag$d1973$1215 $axi, 116 p.$d24 cm$v10 463 1$1001VAN0026337$12001 $aˆThe ‰structure of fields$fby David Winter$1210 $aNew York$cSpringer$d1974$1215 $aXII, 205 p.$cill.$d 25 cm$v16 463 1$1001VAN0267821$12001 $aRandom Processes$fM. Rosenblatt$1205 $a2. ed$1210 $aNew York$cSpringer-Verlag$d1974$1215 $ax, 228 p.$cill.$d24 cm$v17 463 1$1001VAN0267827$12001 $aˆAn ‰Algebraic Introduction to Mathematical Logic$fDonald W. Barnes, John M. Mack$1210 $aNew York$cSpringer-Verlag$d1975$1215 $aix, 123 p.$cill.$d24 cm$v22 463 1$1001VAN0267978$12001 $aGeometric Functional Analysis and its Applications$fRichard B. Holmes$1210 $aNew York$cSpringer$d1975$1215 $ax, 246 p.$cill.$d24 cm$v24 463 1$1001VAN0268005$12001 $aAlgebraic Theories$fErnest G. Manes$1210 $aNew York$cSpringer$d1976$1215 $ax, 356 p.$d24 cm$v26 463 1$1001VAN0026363$12000 $aVolume 1$fOscar Zariski, Pierre Samuel, with the cooperation of I. S. Cohen$1210 $aNew York$cSpringer$d1958$1215 $aX, 329 p.$d24 cm$v28 463 1$1001VAN0254354$12000 $aVolume 2. / Oscar Zariski, Pierre Samuel$1210 $aBerlin$cSpringer$d1960$1215 $aX, 414 p.$d24 cm$v29 463 1$1001VAN0026368$12000 $aVolume 2$fOscar Zariski, Pierre Samuel, with the cooperation of I. S. Cohen$1210 $aNew York$cSpringer$d1960$1215 $aX, 414 p.$d24 cm$v29 463 1$1001VAN0029631$12001 $aˆ1: ‰Basic concepts$fNathan Jacobson$1210 $aNew York$cSpringer$d1951$1215 $aXII, 217 p.$d24 cm$v30 463 1$1001VAN0267398$12001 $aˆ1: ‰Basic concepts$fNathan Jacobson$1210 $aNew York$cSpringer$d1951$1215 $aXII, 217 p.$d24 cm$v30 463 1$1001VAN0267453$12001 $aˆ2: ‰Linear Algebra$fNathan Jacobson$1210 $aNew York$cSpringer$d1953$1215 $aXII, 280 p.$d24 cm$v31 463 1$1001VAN0267489$12001 $aˆ3: ‰Theory of Fields and Galois Theory$fNathan Jacobson$1210 $aNew York$cSpringer$d1964$1215 $aXII, 324 p.$d24 cm$v32 463 1$1001VAN0267501$12001 $aPrinciples of Random Walk$fFrank Spitzer$1205 $a2. ed$1210 $aNew York$cSpringer$d1964$1215 $axiii, 408 p.$cill.$d24 cm$v34 463 1$1001VAN0268009$12001 $aBanach Algebras and Several Complex Variables$fJohn Wermer$1205 $a2. ed$1210 $aNew York$cSpringer$d1976$1215 $aix, 161 p.$d24 cm$v35 463 1$1001VAN0254405$12001 $aLinear Topological Spaces$fJohn L. Kelley, ... [et al.]$1210 $aBerlin$cSpringer$d1963$1215 $axv, 256 p.$cill.$d24 cm$v36 463 1$1001VAN0268023$12001 $aMathematical Logic$fJ. Donald Monk$1210 $aNew York$cSpringer$d1976$1215 $ax, 532 p.$d24 cm$v37 463 1$1001VAN0268037$12001 $aSeveral Complex Variables$fH. Grauert, K. Fritzsche$1210 $aNew York$cSpringer$d1976$1215 $aviii, 208 p.$d24 cm$v38 463 1$1001VAN0268007$12001 $aˆAn ‰Invitation to C-Algebras$fWilliam Arveson$1210 $aNew York$cSpringer$d1976$1215 $ax, 108 p.$d24 cm$v39 463 1$1001VAN0268010$12001 $aDenumerable Markov Chains$ewith a chapter of Markov Random Fields by David Griffeath$fJohn G. Kemeny, J. Laurie Snell, Anthony W. Knapp$1205 $a2. ed$1210 $aNew York$cSpringer$d1976$1215 $axii, 484 p.$d24 cm$v40 463 1$1001VAN0268073$12001 $aElementary Algebraic Geometry$fKeith Kendig$1210 $aNew York$cSpringer$d1977$1215 $aviii, 309 p.$cill.$d24 cm$v44 463 1$1001VAN0268086$12001 $aGeometric Topology in Dimensions 2 and 3$fEdwin E. Moise$1210 $aNew York$cSpringer$d1977$1215 $ax, 262 p.$d24 cm$v47 463 1$1001VAN0268083$12001 $aGeneral Relativity for Mathematicians$fRainer K. Sachs, Hung-Hsi Wu$1210 $aNew York$cSpringer$d1977$1215 $axii, 292 p.$d24 cm$v48 463 1$1001VAN0268098$12001 $aLinear Geometry$fK. W. Gruenberg, A. J. Weir$1205 $a2. ed$1210 $aNew York$cSpringer$d1977$1215 $ax, 199 p.$d24 cm$v49 463 1$1001VAN0268142$12001 $aˆA ‰Course in Differential Geometry$fWilhelm Klingenberg$gTranslated by David Hoffman$1210 $aNew York$cSpringer$d1978$1215 $axii, 180 p.$cill.$d24 cm$v51 463 1$1001VAN0268046$12001 $aˆA ‰Course in Mathematical Logic$fYu. I. Manin$gTranslated from the Russian by Neal Koblitz$1210 $aNew York$cSpringer$d1977$1215 $axiii, 288 p.$cill.$d24 cm$v53 463 1$1001VAN0268070$12001 $aCombinatorics with Emphasis on the Theory of Graphs$fJack E. Graver, Mark E. Watkins$1205 $aJack E. Graver$bMark E. Watkins$1210 $aNew York$cSpringer$d1977$1215 $axvi, 352 p.$d24 cm$v54 463 1$1001VAN0029387$12001 $aˆ1: ‰Elements of functional analysis$fArlen Brown, Carl Pearcy$1210 $aNew York$cSpringer$d1977$1215 $aXIV, 474 p.$d25 cm$v55 463 1$1001VAN0268093$12001 $aˆ1: ‰Elements of functional analysis$fArlen Brown, Carl Pearcy$1210 $aNew York$cSpringer$d1977$1215 $axiv, 474 p.$d25 cm$v55 463 1$1001VAN0267483$12001 $aˆAn ‰introduction to knot theory$fRichard H. Crowell, Ralph H. Fox$1210 $aNew York$cSpringer$d1963$1215 $ax, 182 p.$cill.$d24 cm$v57 463 1$1001VAN0268114$12001 $aP-Adic numbers, p-adic analysis, and zeta-functions$fNeal Koblitz$1210 $aNew York$cSpringer$d1977$1215 $ax, 122 p.$cill.$d24 cm$v58 463 1$1001VAN0268716$12001 $aP-Adic numbers, p-adic analysis, and zeta-functions$fNeal Koblitz$1205 $a2. ed$1210 $aNew York$cSpringer$d1984$1215 $axii, 153 p.$cill.$d24 cm$v58 463 1$1001VAN0026435$12001 $aP-Adic numbers, p-adic analysis, and zeta-functions$fNeal Koblitz$1205 $a2. ed$1210 $aNew York$cSpringer$d1996$1215 $aXII, 150 p.$cill.$d25 cm$v58 463 1$1001VAN0268171$12001 $aCyclotomic fields$fSerge Lang$1210 $aNew York$cSpringer-Verlag$d1978$1215 $axi, 253 p.$cill.$d24 cm$v59 463 1$1001VAN0268269$12001 $aGraph Theory$eAn Introductory Course$fBéla Bollobás$1210 $aNew York$cSpringer$d1979$1215 $ax, 180 p.$cill.$d24 cm$v63 463 1$1001VAN0268267$12000 $a1$fR. E. Edwards$1205 $a2. ed$1210 $aNew York$cSpringer$d1979$1215 $axii, 228 p.$d24 cm$v64 463 1$1001VAN0268320$12001 $aDifferential Analysis on Complex Manifolds$fR. O. Wells jr$1205 $a2. ed$1210 $aNew York$cSpringer$d1980$1215 $ax, 262 p.$cill.$d24 cm$v65 463 1$1001VAN0268272$12001 $aIntroduction to Affine Group Schemes$fWilliam C. Waterhouse$1210 $aNew York$cSpringer$d1979$1215 $axii, 164 p.$cill.$d24 cm$v66 463 1$1001VAN0268319$12001 $aCyclotomic fields 2. / Serge Lang$1210 $aNew York$cSpringer-Verlag$d1980$1215 $axi, 164 p.$cill.$d24 cm$v69 463 1$1001VAN0268355$12001 $aSingular Homology Theory$fWilliam S. Massey$1210 $aNew York$cSpringer$d1980$1215 $axvi, 428 p.$cill.$d24 cm$v70 463 1$1001VAN0268351$12001 $aMultiplicative Number Theory$fHarold Davenport$1205 $a2. ed$1210 $aNew York$cSpringer$d1980$1215 $axiii, 177 p.$cill.$d24 cm$v74 463 1$1001VAN0268399$12001 $aLectures on the Theory of Algebraic Numbers$fErich Hecke$gTransl. from the German by George U. Brauer and Jay R. Goldman with the assistance of R. Kotzen$1210 $aNew York$cSpringer-Verlag$d1981$1215 $axii, 242 p.$cill.$d24 cm$v77 463 1$1001VAN0026335$12001 $aIntroduction to cyclotomic fields$fLawrence C. Washington$1205 $a2. ed$1210 $aNew York$cSpringer$d1997$1215 $aXIV, 487 p.$cill.$d24 cm$v83 463 1$1001VAN0268524$12001 $aIntroduction to cyclotomic fields$fLawrence C. Washington$1210 $aNew York$cSpringer$d1982$1215 $axi, 389 p.$cill.$d24 cm$v83 463 1$1001VAN0268510$12000 $a2$fR. E. Edwards$1205 $a2. ed$1210 $aNew York$cSpringer$d1982$1215 $axi, 369 p.$d24 cm$v85 463 1$1001VAN0268520$12001 $aIntroduction to algebraic and Abelian functions$fSerge Lang$1205 $a2. ed$1210 $aNew York$cSpringer$d1982$1215 $aix, 169 p.$cill.$d24 cm$v89 463 1$1001VAN0052375$12001 $aIntroduction to algebraic and Abelian functions$fSerge Lang$1205 $a2. ed$1210 $aNew York$cSpringer$d1982$1215 $aIX, 169 p.$cill.$d24 cm$v89 463 1$1001VAN0050656$12001 $aˆThe ‰geometry of discrete groups$fAlan F. Beardon$1210 $aNew York$cSpringer$d1983$1215 $aXII, 337 p.$d25 cm$v91 463 1$1001VAN0268633$12001 $aˆThe ‰Geometry of Discrete Groups$fAlan F. Beardon$1210 $aNew York$cSpringer$d1983$1215 $axii, 337 p.$d25 cm$v91 463 1$1001VAN0268727$12001 $aSequences and Series in Banach Spaces$fJoseph Diestel$1210 $aNew York$cSpringer-Verlag$d1984$1215 $axii, 263 p.$cill.$d24 cm$v92 463 1$1001VAN0268705$12001 $aˆPart 1: The ‰Geometry of Surfaces, Transformation Groups, and Fields$fB. A. Dubrovin, A. T. Fomenko, S. P. Novikov$gTransl. from the Russian by Robert G. Burns$1210 $aNew York$cSpringer-Verlag$d1984$1215 $axv, 464 p.$cill.$d24 cm$v93 463 1$1001VAN0268717$12001 $aProbability$f A. N. Shiryaev$gTransl. from the Russian by R. P. Boas$1210 $aNew York$cSpringer-Verlag$d1984$1215 $axi, 580 p.$cill.$d24 cm$v95 463 1$1001VAN0115276$12001 $aProbability-1$fAlbert N. Shiryaev$gtranslated by R. P. Boas and D. M. Chibisov$1205 $a3. ed$1210 $aNew York$cSpringer$d2016$1215 $aXVII, 486 p.$cill.$d24 cm$v95 463 1$1001VAN0127261$12001 $aProbability-2$fAlbert N. Shiryaev$gtranslated by R. P. Boas and D. M. Chibisov$1205 $a3. ed$1210 $aNew York$cSpringer$d2019$1215 $ax, 348 p.$d24 cm$v95 463 1$1001VAN0268740$12001 $aˆA ‰course in functional analysis$fJohn B. Conway$1210 $aNew York$cSpringer$d1985$1215 $axiv, 406 p.$d25 cm$v96 463 1$1001VAN0027700$12001 $aˆA ‰course in functional analysis$fJohn B. Conway$1205 $a2. ed$1210 $aNew York$cSpringer$d1990$1215 $aXVI, 399 p.$d25 cm$v96 463 1$1001VAN0026427$12001 $aIntroduction to elliptic curves and modular forms$fNeal Koblitz$1205 $a2. ed$1210 $aNew York$cSpringer$d1993$1215 $aX, 248 p.$cill.$d25 cm$v97 463 1$1001VAN0268663$12001 $aIntroduction to elliptic curves and modular forms$fNeal Koblitz$1210 $aNew York$cSpringer$d1984$1215 $aviii, 248 p.$cill.$d25 cm$v97 463 1$1001VAN0268799$12001 $aˆPart 2: The ‰Geometry and Topology of Manifolds$fB. A. Dubrovin, A. T. Fomenko, S. P. Novikov$gTransl. from the Russian by Robert G. Burns$1210 $aNew York$cSpringer-Verlag$d1985$1215 $axv, 430 p.$cill.$d24 cm$v104 463 1$1001VAN0029982$12001 $aˆA ‰first course in noncommutative rings$fT. Y. Lam$1210 $aNew York$cSpringer$d1991$1215 $aXV, 397 p.$d25 cm$v131 463 1$1001VAN0052307$12001 $aIteration of rational functions$ecomplex analytic dynamical systems$fAlan F. Beardon$1210 $aNew York$cSpringer$d1991$1215 $aXVI, 280 p.$cill.$d25 cm$v132 463 1$1001VAN0051504$12001 $aAdvanced linear algebra$fSteven Roman$1210 $aNew York$cSpringer$d1992$1215 $aXII, 363 p.$cill.$d24 cm$v135 463 1$1001VAN0029432$12001 $aˆA ‰course in computational algebraic number theory$fHenri Cohen$1210 $aBerlin$cSpringer$d1993$1215 $aXXI, 534 p.$d24 cm$v138 463 1$1001VAN0126874$12001 $aFoundations of Hyperbolic Manifolds$fJohn G. Ratcliffe$1205 $a3. ed$1210 $aCham$cSpringer$d2019$1215 $axii, 800 p.$cill.$d24 cm$v149 463 1$1001VAN0124783$12001 $aIntroduction to Riemannian Manifolds$fJohn M. Lee$1205 $a2. ed$1210 $aCham$cSpringer$d2018$1215 $axiii, 437 p.$cill.$d24 cm$v176 463 1$1001VAN0049527$12001 $aOrdinary differential equations$fWolfgang Walter$gtranslated by Russell Thompson$1210 $aNew York$cSpringer$d1998$1215 $aXI, 380 p.$d24 cm$v182 463 1$1001VAN0029987$12001 $aLectures on modules and rings$fT. Y. Lam$1210 $aNew York$cSpringer$d1999$1215 $aXXI, 557 p.$cill.$d24 cm$v189 463 1$1001VAN0024115$12001 $aˆA ‰course in p-adic analysis$fAlain M. Robert$1210 $aNew York$cSpringer$d2000$1215 $aXV, 437 p.$cill.$d24 cm$v198 463 1$1001VAN0249769$12001 $aSmooth Manifolds and Observables$fJet Nestruev$1205 $a2. ed$1210 $aCham$cSpringer$d2020$1215 $axviii, 433 p.$cill.$d24 cm$v220 463 1$1001VAN0113319$12001 $aLie groups, Lie algebras, and representations$ean elementary introduction$fBrian C. Hall$1205 $a2. ed$1210 $a[Cham]$cSpringer$d2015$1215 $aXIII, 453 p.$cill.$d24 cm$v222 463 1$1001VAN0104143$12001 $aˆAn ‰introduction to Markov processes$fDaniel W. Stroock$1205 $a2. ed$1210 $aBerlin$cSpringer$d2014$1215 $aXVIII, 203 p.$d24 cm$v230 463 1$1001VAN0102944$12001 $aClassical Fourier Analysis$fLoukas Grafakos$1205 $a3. ed$1210 $aNew York$cSpringer$d2014$1215 $aXVII, 638 p.$cill.$d24 cm$v249 463 1$1001VAN0102947$12001 $aModern Fourier analysis$fLoukas Grafakos$1205 $a3. ed$1210 $aNew York$cSpringer$d2014$1215 $aXVI, 624 p.$d24 cm$v250 463 1$1001VAN0085542$12001 $aModern Fourier analysis$fLoukas Grafakos$1205 $a2. ed$1210 $aNew York$cSpringer$d2009$1215 $aXV, 504 p.$d24 cm$v250 463 1$1001VAN0084640$12001 $aMonomial ideals$fJurgen Herzog, Takayuki Hibi$1210 $aLondon$cSpringer$d2011$1215 $aXVI, 305 p.$d24 cm$v260 463 1$1001VAN0249075$12001 $aEssentials of Integration Theory for Analysis$fDaniel W. Stroock$1205 $a2. ed$1210 $aCham$cSpringer$d2020$1215 $axvi, 285 p.$cill.$d24 cm$v262 463 1$1001VAN0103220$12001 $aLocally convex spaces$fM. Scott Osborne$1210 $aCham$cSpringer$d2014$1215 $aVII, 213 p.$cill.$d24 cm$v269 463 1$1001VAN0103023$12001 $aFundamentals of algebraic topology$fSteven H. Weintraub$1210 $aNew York$cSpringer$d2014$1215 $aX, 163 p.$cill.$d24 cm$v270 463 1$1001VAN0104055$12001 $aInteger programming$fMichele Conforti, Gérard Cornuéjols, Giacomo Zambelli$1210 $aCham$cSpringer$d2014$1215 $aXII, 456 p.$cill.$d24 cm$v271 463 1$1001VAN0113461$12001 $aOperator theoretic aspects of ergodic theory$fTanja Eisner ... [et al]$1210 $a[Cham]$cSpringer$d2015$1215 $aXVIII, 628 p.$d24 cm$v272 463 1$1001VAN0114873$12001 $aHomotopical topology$fAnatoly Fomenko, Dmitry Fuchs$1205 $a2. ed$1210 $a[Cham]$cSpringer$d2016$1215 $aXI, 627 p.$cill.$d24 cm$v273 463 1$1001VAN0114495$12001 $aBrownian motion, martingales, and stochastic calculus$fJean-François Le Gall$1210 $a[Cham]$cSpringer$d2016$1215 $aXIII, 273 p.$cill.$d24 cm$v274 463 1$1001VAN0123834$12001 $aDifferential Geometry$eConnections, Curvature, and Characteristic Classes$fLoring W. Tu$1210 $aCham$cSpringer$d2017$1215 $axvi, 346 p.$cill.$d24 cm$v275 463 1$1001VAN0124155$12001 $aFunctional Analysis, Spectral Theory, and Applications$fManfred Einsiedler, Thomas Ward$1210 $aCham$cSpringer$d2017$1215 $axiv, 614 p.$cill.$d24 cm$v276 463 1$1001VAN0124049$12001 $aˆThe ‰Moment Problem$fKonrad Schmüdgen$1210 $aCham$cSpringer$d2017$1215 $axii, 535 p.$cill.$d24 cm$v277 463 1$1001VAN0124259$12001 $aModern Real Analysis$fWilliam P. Ziemer$gwith contributions by Monica Torres$1205 $a2. ed$1210 $aCham$cSpringer$d2017$1215 $axi, 382 p.$cill.$d24 cm$v278 463 1$1001VAN0124583$12001 $aBinomial Ideals$fJürgen Herzog, Takayuki Hibi, Hidefumi Ohsugi$1210 $aCham$cSpringer$d2018$1215 $axix, 321 p.$cill.$d24 cm$v279 463 1$1001VAN0126935$12001 $aIntroduction to Real Analysis$fChristopher Heil$1210 $aCham$cSpringer$d2019$1215 $axvii, 400 p.$cill.$d24 cm$v280 463 1$1001VAN0126930$12001 $aIntersection Homology & Perverse Sheaves$ewith Applications to Singularities$fLauren?iu G. Maxim$1210 $aCham$cSpringer$d2019$1215 $axv, 270 p.$cill.$d24 cm$v281 463 1$1001VAN0249488$12001 $aMeasure, Integration & Real Analysis$fSheldon Axler$1210 $aCham$cSpringer$d2020$1215 $axviii, 411 p.$cill.$d24 cm$v282 463 1$1001VAN0248742$12001 $aBasic Representation Theory of Algebras$fIbrahim Assem, Flávio U. Coelho$1210 $aCham$cSpringer$d2020$1215 $ax, 311 p.$cill.$d24 cm$v283 463 1$1001VAN0249811$12001 $aSpectral Theory$eBasic Concepts and Applications$fDavid Borthwick$1210 $aCham$cSpringer$d2020$1215 $ax, 338 p.$cill.$d24 cm$v284 463 1$1001VAN0248701$12001 $aˆAn ‰Invitation to Unbounded Representations of ?-Algebras on Hilbert Space$fKonrad Schmüdgen$1210 $aCham$cSpringer$d2020$1215 $axviii, 381 p.$cill.$d24 cm$v285 463 1$1001VAN0249392$12001 $aLectures on Convex Geometry$fDaniel Hug, Wolfgang Weil$1210 $aCham$cSpringer$d2020$1215 $axviii, 287 p.$cill.$d24 cm$v286 463 1$1001VAN0249109$12001 $aExplorations in Complex Functions$fRichard Beals, Roderick S. C. Wong$1210 $aCham$cSpringer$d2020$1215 $axvi, 353 p.$cill.$d24 cm$v287 463 1$1001VAN0275142$12001 $aQuaternion Algebras$fJohn Voight$1210 $aCham$cSpringer$d2021$1215 $axxiii, 885 p.$cill.$d24 cm$v288 463 1$1001VAN0274723$12001 $aErgodic Dynamics$eFrom Basic Theory to Applications$fJane Hawkins$1210 $aCham$cSpringer$d2021$1215 $axiv, 336 p.$cill.$d24 cm$v289 463 1$1001VAN0274869$12001 $aLessons in Enumerative Combinatorics$fÖmer E?ecio?lu, Adriano M. Garsia$1210 $aCham$cSpringer$d2021$1215 $axvi, 479 p.$cill.$d24 cm$v290 463 1$1001VAN0274931$12001 $aMathematical Logic$fHeinz-Dieter Ebbinghaus, Jörg Flum, Wolfgang Thomas$1205 $a3. ed$1210 $aCham$cSpringer$d2021$1215 $aix, 304 p.$cill.$d24 cm$v291 463 1$1001VAN0275144$12001 $aRandom Walk, Brownian Motion, and Martingales$fRabi Bhattacharya, Edward C. Waymire$1210 $aCham$cSpringer$d2021$1215 $axv, 396 p.$cill.$d24 cm$v292 463 1$1001VAN0278137$12001 $aStationary Processes and Discrete Parameter Markov Processes$fRabi Bhattacharya, Edward C. Waymire$1210 $aCham$cSpringer$d2022$1215 $axvii, 449 p.$cill.$d24 cm$v293 463 1$1001VAN0278963$12001 $aPartial Differential Equations$eAn Introduction to Analytical and Numerical Methods$fWolfgang Arendt, Karsten Urban$gTranslated from the German by James B. Kennedy$1210 $aCham$cSpringer$d2023$1215 $axxiv, 452 p.$cill.$d24 cm$v294 463 1$1001VAN0277906$12001 $aMeasure Theory, Probability, and Stochastic Processes$fJean-François Le Gall$1210 $aCham$cSpringer$d2022$1215 $axiv, 406 p.$cill.$d24 cm$v295 463 1$1001VAN0278786$12001 $aDrinfeld Modules$fMihran Papikian$1210 $aCham$cSpringer$d2023$1215 $axxi, 526 p.$cill.$d24 cm$v296 463 1$1001VAN0278991$12001 $aRandom Walks on Infinite Groups$fSteven P. Lalley$1210 $aCham$cSpringer$d2023$1215 $axii, 369 p.$cill.$d24 cm$v297 463 1$1001VAN0279536$12001 $aMore Explorations in Complex Functions$fRichard Beals, Roderick S. C. Wong$1210 $aCham$cSpringer$d2023$1215 $axii, 403 p.$cill.$d24 cm$v298 463 1$1001VAN0278768$12001 $aContinuous Parameter Markov Processes and Stochastic Differential Equations$fRabi Bhattacharya, Edward C. Waymire$1210 $aCham$cSpringer$d2023$1215 $axv, 506 p.$cill.$d24 cm$v299 463 1$1001VAN0268661$12001 $aHarmonic analysis on semigroups$etheory of positive definite and related functions$fChristian Berg, Jens Peter Reus Christensen, Paul Ressel$1210 $aNew York$cSpringer$d1984$1215 $ax, 289 p.$d25 cm$v100 463 1$1001VAN0052481$12001 $aHarmonic analysis on semigroups$etheory of positive definite and related functions$fChristian Berg, Jens Peter Reus Christensen, Paul Ressel$1210 $aNew York$cSpringer$d1984$1215 $aX, 289 p.$d25 cm$v100 463 1$1001VAN0049008$12001 $aGalois theory$fHarold M. Edwards$1210 $aNew York$cSpringer$d1984$1215 $aXII, 152 p.$d25 cm$v101 463 1$1001VAN0049841$12001 $aLie groups, lie algebras, and their representations$fV. S. Varadarajan$1210 $aNew York$cSpringer$d1984$1215 $aXIII, 430 p.$d24 cm$v102 463 1$1001VAN0268694$12001 $aLie groups, lie algebras, and their representations$fV. S. Varadarajan$1210 $aNew York$cSpringer$d1984$1215 $axiii, 430 p.$d24 cm$v102 463 1$1001VAN0268753$12001 $aComplex analysis$fSerge Lang$1205 $a2. ed$1210 $aNew York$cSpringer$d1985$1215 $axiv, 370 p.$cill.$d24 cm$v103 463 1$1001VAN0060484$12001 $aComplex analysis$fSerge Lang$1205 $a4. ed$1210 $aNew York$cSpringer$d1999$1215 $aXIV, 485 p.$d24 cm$v103 463 1$1001VAN0052314$12001 $aComplex analysis$fSerge Lang$1205 $a3. ed$1210 $aNew York$cSpringer$d1993$1215 $aXIV, 458 p.$cill.$d25 cm$v103 463 1$1001VAN0268815$12001 $aSL2(R)$fSerge Lang$1205 $aCorrected 2. printing$1210 $aNew York$cSpringer$d1985 [stampa 1998]$1215 $axvi, 428 p.$cill.$d24 cm$v105 463 1$1001VAN0053549$12001 $aSL2(R)$fSerge Lang$1205 $aCorrected 2. printing$1210 $aNew York$cSpringer$d1985 [stampa 1998]$1215 $aXVI, 428 p.$cill.$d24 cm$v105 463 1$1001VAN0051142$12001 $aˆThe ‰Arithmetic of Elliptic Curves$fJoseph H. Silverman$1210 $aNew York$cSpringer$d1986$1215 $aXII, 400 p.$cill.$d25 cm$v106 463 1$1001VAN0268895$12001 $aˆThe ‰Arithmetic of Elliptic Curves$fJoseph H. Silverman$1210 $aNew York$cSpringer$d1986$1215 $axii, 400 p.$cill.$d25 cm$v106 463 1$1001VAN0268848$12001 $aApplications of Lie groups to differential equations$fPeter J. Olver$1210 $aNew York$cSpringer$d1986$1215 $axxvi, 500 p.$d24 cm$v107 463 1$1001VAN0036759$12001 $aApplications of Lie groups to differential equations$fPeter J. Olver$1205 $a2. ed$1210 $aNew York$cSpringer$d1993$1215 $aXXVIII, 513 p.$d24 cm$v107 463 1$1001VAN0268864$12001 $aHolomorphic functions and integral representations in several complex variables$fR. Michael Range$1210 $aNew York$cSpringer$d1986$1215 $axviii, 386 p.$cill.$d25 cm$v108 463 1$1001VAN0053130$12001 $aHolomorphic functions and integral representations in several complex variables$fR. Michael Range$1210 $aNew York$cSpringer$d1986$1215 $aXVIII, 386 p.$cill.$d25 cm$v108 463 1$1001VAN0268993$12001 $aUnivalent Functions and Teichmüller Spaces$fOlli E. Lehto$1210 $aNew York$cSpringer$d1987$1215 $axii, 257 p.$d25 cm$v109 463 1$1001VAN0053679$12001 $aUnivalent functions and Teichmuller spaces$fOlli E. Lehto$1210 $aNew York$cSpringer$d1987$1215 $aXII, 257 p.$d25 cm$v109 463 1$1001VAN0267746$12001 $aFunctions of one complex variable$fJohn B. Conway$1210 $aNew York$cSpringer-Verlag$d1973$1215 $axiii, 313 p.$d24 cm$v11 463 1$1001VAN0019550$12001 $aFunctions of one complex variable$fJohn B. Conway$1205 $a2. ed$1210 $aNew York [etc.]$cSpringer$d1978$1215 $aXIII, 317 p.$d24 cm$v11 463 1$1001VAN0268178$12001 $aFunctions of one complex variable 1. / John B. Conway$1205 $a2. ed$1210 $aNew York$cSpringer$d1978$1215 $axiv, 322 p.$d24 cm$1300 $aRev. corr. ed. of: Functions of one complex variable, 2. ed., 1978$v11 463 1$1001VAN0024198$12001 $aAlgebraic number theory$fSerge Lang$1205 $a2nd ed$1210 $aNew York$cSpringer$d1994$1215 $aXIII, 357 p.$cill.$d24 cm$v110 463 1$1001VAN0268845$12001 $aAlgebraic number theory$fSerge Lang$1210 $aNew York$cSpringer$d1986$1215 $axiii, 354 p.$cill.$d24 cm$v110 463 1$1001VAN0060299$12001 $aElliptic curves$fDale Husemoller$gwith appendices by Otto Forster, Ruth Lawrence and Stefan Theisen$1205 $a2. ed$1210 $aNew York$cSpringer$d2004$1215 $aXXI, 487 p.$cill.$d25 cm$v111 463 1$1001VAN0268938$12001 $aElliptic curves$fDale Husemoller$gWith an appendix by Ruth Lawrence$1210 $aNew York$cSpringer$d1987$1215 $axv, 350 p.$cill.$d25 cm$v111 463 1$1001VAN0268941$12001 $aElliptic functions$fSerge Lang$1205 $a2. ed$1210 $aNew York$cSpringer-Verlag$d1987$1215 $axi, 326 p.$cill.$d25 cm$v112 463 1$1001VAN0030068$12001 $aElliptic functions$fSerge Lang$1205 $a2. ed$1210 $aNew York$cSpringer-Verlag$d1987$1215 $aXI, 326 p.$cill.$d25 cm$v112 463 1$1001VAN0269010$12001 $aBrownian motion and stochastic calculus$fIoannis Karatzas, Steven E. Shreve$1210 $aNew York$cSpringer$d1988$1215 $axxiii, 470 p.$c10 ill.$d24 cm$v113 463 1$1001VAN0055724$12001 $aBrownian motion and stochastic calculus$fIoannis Karatzas, Steven E. Shreve$1205 $aRepr. of 2. ed$1210 $aNew York$cSpringer$d1991 [stampa 1994]$1215 $aXXIII, 470 p.$c10 ill.$d24 cm$v113 463 1$1001VAN0268918$12001 $aˆA ‰Course in Number Theory and Cryptography$fNeal Koblitz$1210 $aNew York$cSpringer$d1987$1215 $aviii, 208 p.$d24 cm$v114 463 1$1001VAN0030052$12001 $aˆA ‰course in number theory and cryptography$fNeal Koblitz$1205 $a2. ed$1210 $aNew York$cSpringer$d1994$1215 $aX, 235 p.$d24 cm$v114 463 1$1001VAN0269012$12001 $aDifferential geometry$emanifolds, curves and surfaces$fMarcel Berger, Bernard Gostiaux$gtranslated from the French by Silvio Levy$1210 $aNew York$cSpringer$d1988$1215 $aXII, 474 p.$cill.$d25 cm$v115 463 1$1001VAN0052486$12001 $aDifferential geometry$emanifolds, curves and surfaces$fMarcel Berger, Bernard Gostiaux$gtranslated from the French by Silvio Levy$1210 $aNew York$cSpringer$d1988$1215 $aXII, 474 p.$cill.$d25 cm$v115 463 1$1001VAN0055663$12000 $aVol. 1$fJohn L. Kelley, T. P. Srinivasan$1210 $aNew York [etc.]$cSpringer$d1988$1215 $aX, 150 p.$d25 cm$v116 463 1$1001VAN0269001$12001 $aAlgebraic groups and class fields$fJean-Pierre Serre$gtranslation of the french ed$1210 $aNew York$cSpringer-Verlag$d1988$1215 $aix, 207 p.$d25 cm$v117 463 1$1001VAN0047321$12001 $aAlgebraic groups and class fields$fJean-Pierre Serre$gtranslation of the french ed$1210 $aNew York$cSpringer-Verlag$d1988$1215 $aIX, 207 p.$d25 cm$v117 463 1$1001VAN0269156$12001 $aAnalysis now$fGert K. Pedersen$1210 $aNew York$cSpringer$d1989$1215 $axiv, 277 p.$d25 cm$v118 463 1$1001VAN0053826$12001 $aAnalysis now$fGert K. Pedersen$1210 $aNew York$cSpringer$d1989$1215 $aXIV, 277 p.$d25 cm$v118 463 1$1001VAN0269005$12001 $aˆAn ‰introduction to algebraic topology$fJoseph J. Rotman$1210 $aNew York$cSpringer$d1988$1215 $axiv, 433 p.$cill.$d25 cm$v119 463 1$1001VAN0052276$12001 $aˆAn ‰introduction to algebraic topology$fJoseph J. Rotman$1205 $aCorrected 2. printing$1210 $aNew York$cSpringer$d1988 [stampa 1993]$1215 $aXIV, 433 p.$cill.$d25 cm$v119 463 1$1001VAN0052295$12001 $aAdvanced mathematical analysis$eperiodic functions and distributions, complex analysis, Laplace transform and applications$fR. Beals$1210 $aNew York$cSpringer$d1973$1215 $aX, 230 p.$d24 cm$v12 463 1$1001VAN0267726$12001 $aAdvanced mathematical analysis$eperiodic functions and distributions, complex analysis, Laplace transform and applications$fR. Beals$1210 $aNew York$cSpringer$d1973$1215 $aX, 230 p.$d24 cm$v12 463 1$1001VAN0041509$12001 $aWeakly differentiable functions$eSobolev spaces and functions of bounded variation$fWilliam P. Ziemer$1210 $aNew York$cSpringer$d1989$1215 $aXVI, 308 p.$d25 cm$v120 463 1$1001VAN0269255$12001 $aWeakly differentiable functions$eSobolev spaces and functions of bounded variation$fWilliam P. Ziemer$1210 $aNew York$cSpringer$d1989$1215 $axvi, 308 p.$d25 cm$v120 463 1$1001VAN0049306$12001 $aCyclotomic fields 1. and 2. / Serge Lang ; with an appendix by Karl Rubin$1205 $aCombined 2. ed$1210 $aNew York$cSpringer-Verlag$d1990$1215 $axvii, 433 p.$cill.$d25 cm$v121 463 1$1001VAN0052476$12001 $aTheory of complex functions$fReinhold Remmert$gtranslated by Robert B. Burckel$1210 $aNew York$cSpringer$d1991$1215 $aXIX, 453 p.$cill.$d24 cm$v122 463 1$1001VAN0029548$12001 $aNumbers$fHeinz-Dieter Ebbinghaus ... [et al.]$gwith an introduction by Klaus Lamotke$gtranslated by H. L. S. Orde$gedited by John H. Ewing$1210 $aNew York$cSpringer$d1991$1215 $aXVIII, 391 p.$cill.$d24 cm$v123 463 1$1001VAN0052480$12001 $aComplex variables$ean introduction$fCarlos A. Berenstein, Roger Gay$1210 $aNew York$cSpringer$d1991$1215 $aXII, 650 p.$cill.$d25 cm$v125 463 1$1001VAN0053116$12001 $aLinear algebraic groups$fArmand Borel$1205 $a2. enlarged ed$1210 $aNew York$cSpringer$d1991$1215 $ax, 288 p.$d24 cm$v126 463 1$1001VAN0056387$12001 $aˆA ‰basic course in algebraic topology$fWilliam S. Massey$1210 $aNew York$cSpringer$d1991$1215 $aXVI, 428 p.$cill.$d25 cm$v127 463 1$1001VAN0053134$12001 $aPartial differential equations$fJeffrey Rauch$1210 $aNew York$cSpringer$d1991$1215 $aX, 263 p.$cill.$d25 cm$v128 463 1$1001VAN0052243$12001 $aRepresentation theory$ea first course$fWilliam Fulton, Joe Harris$1210 $aNew York$cSpringer$d1991$1215 $aXV, 551 p.$cill.$d24 cm$v129 463 1$1001VAN0050560$12001 $aRings and categories of modules$fFrank W. Anderson, Kent R. Fuller$1205 $a2. ed$1210 $aNew York$cSpringer$d1992$1215 $aVIII, 376 p.$d24 cm$v13 463 1$1001VAN0267823$12001 $aRings and categories of modules$fFrank W. Anderson, Kent R. Fuller$1210 $aNew York$cSpringer$d1974$1215 $aix, 339 p.$d24 cm$v13 463 1$1001VAN0056067$12001 $aTensor geometry$ethe geometric viewpoint and its uses$fC. T. J. Dodson, T. Poston$1205 $a2. ed$1210 $aNew York$cSpringer$d1991$1215 $aXIV, 432 p.$cill.$d24 cm$v130 463 1$1001VAN0024865$12001 $aAlgebraic geometry$ea first course$fJoe Harris$1210 $aNew York$cSpringer$d1992$1215 $aXIX, 328 p.$cill.$d25 cm$v133 463 1$1001VAN0042429$12001 $aCoding and information theory$fSteven Roman$1210 $aNew York$cSpringer$d1992$1215 $aXVII, 486 p.$cill.$d25 cm$v134 463 1$1001VAN0051975$12001 $aHarmonic function theory$fSheldon Axler, Paul Bourdon, Wade Ramey$1210 $aNew York$cSpringer-Verlag$d1992$1215 $aXII, 231 p.$cill.$d25 cm$v137 463 1$1001VAN0053363$12001 $aTopology and geometry$fGlen E. Bredon$1210 $aNew York$cSpringer$d1993$1215 $aXIV, 557 p.$cill.$d25 cm$v139 463 1$1001VAN0053000$12001 $aStable mappings and their singularities$fM. Golubitsky, V. Guillemin$1205 $aCorrected 3. printing$1210 $aNew York$cSpringer$d1973$d[stampa 1986]$1215 $aX, 209 p.$cill.$d24 cm$v14 463 1$1001VAN0267782$12001 $aStable mappings and their singularities$fM. Golubitsky, V. Guillemin$1210 $aNew York$cSpringer-Verlag$d1973$1215 $ax, 209 p.$cill.$d24 cm$v14 463 1$1001VAN0051913$12001 $aOptima and equilibria$ean introduction to nonlinear analysis$fJean-Pierre Aubin$gtranslated from the French by Stephen Wilson$1210 $aBerlin$cSpringer$d1993$1215 $aXVI, 417 p.$cill.$d24 cm$v140 463 1$1001VAN0052339$12001 $aGröbner bases$ea computational approach to commutative algebra$fThomas Becker, Volker Weispfenning$gin cooperation with Heinz Kredel$1210 $aNew York$cSpringer$d1993$1215 $aXXII, 574 p.$d25 cm$v141 463 1$1001VAN0053078$12001 $aReal and functional analysis$fSerge Lang$1205 $a3. ed$1210 $aNew York [etc.]$cSpringer$d1993$1215 $aXIV, 580 p.$cill.$d25 cm$v142 463 1$1001VAN0027125$12001 $aMeasure theory$fJoseph Leo Doob$1210 $aNew York$cSpringer$d1994$1215 $aXII, 210 p.$d24 cm$v143 463 1$1001VAN0049490$12001 $aNoncommutative algebra$fBenson Farb, R. Keith Dennis$1210 $aNew York$cSpringer$d1993$1215 $axiv, 223 p.$d24 cm$v144 463 1$1001VAN0050289$12001 $aHomology theory$ean introduction to algebraic topology$fJames W. Vick$1205 $a2. ed$1210 $aNew York$cSpringer$d1994$1215 $aXIV, 242 p.$cill.$d25 cm$v145 463 1$1001VAN0053441$12001 $aComputability$ea mathematical sketchbook$fDouglas S. Bridges$1210 $aNew York$cSpringer$d1994$1215 $aIX, 178 p.$cill.$d25 cm$v146 463 1$1001VAN0047365$12001 $aˆAn ‰introduction to the theory of groups$fJoseph J. Rotman$1205 $a4th ed$1210 $aNew York$cSpringer-Verlag 1995$1215 $aXIV, 513 p$cill$d25 cm$1300 $aIncludes bibliographical references and index$v148 463 1$1001VAN0049414$12001 $aLectures in functional analysis and operator theory$fSterling K. Berberian$1210 $aNew York$cSpringer$d1974$1215 $aIX, 345 p.$d24 cm$v15 463 1$1001VAN0060491$12001 $aCommutative algebra$ewith a view toward algebraic geometry$fDavid Eisenbud$1210 $aNew York [etc.]$cSpringer$dc2004$1215 $aXVI, 797 p.$cill.$d24 cm$v150 463 1$1001VAN0055893$12001 $aCommutative algebra with a view toward algebraic geometry$fDavid Eisenbud$1210 $aNew York$cSpringer$d1995$1215 $aXVI, 785 p.$cill.$d24 cm$v150 463 1$1001VAN0051138$12001 $aAdvanced topics in the arithmetic of elliptic curves$fJoseph H. Silverman$1210 $aNew York$cSpringer$d1994$1215 $aXIII, 525 p.$cill.$d24 cm$v151 463 1$1001VAN0046970$12001 $aLectures on polytopes$fGünter M. Ziegler$1210 $aNew York$cSpringer$d1995$1215 $aIX, 370 p.$cill.$d25 cm$v152 463 1$1001VAN0051640$12001 $aAlgebraic topology$ea first course$fWilliam Fulton$1210 $aNew York$cSpringer$d1995$1215 $aXVIII, 430 p.$cill.$d25 cm$v153 463 1$1001VAN0029490$12001 $aQuantum groups$fC. Kassel$1210 $aNew York$cSpringer$d1995$1215 $aV, 531 p.$cill.$d24 cm$v155 463 1$1001VAN0055655$12001 $aClassical descriptive set theory$fAlexander S. Kechris$1210 $aNew York$cSpringer$d1995$1215 $aXVIII, 402 p.$cill.$d24 cm$v156 463 1$1001VAN0030600$12001 $aField theory$fSteven Roman$1210 $aNew York$aBerlin$cSpringer$d1995$1215 $aXII, 272 p.$d24 cm$v158 463 1$1001VAN0071693$12001 $aFunctions of one complex variable 2$fJohn B. Conway$1210 $aNew York$cSpringer$d1995$1215 $aXVI, 394 p.$d24 cm$v159 463 1$1001VAN0036527$12001 $aDifferential and Riemannian manifolds$fSerge Lang$1205 $aCorrected 2. printing$1210 $aNew York$cSpringer$d1995 [stampa 1996]$1215 $aXIII, 364 p.$cill.$d24 cm$v160 463 1$1001VAN0029652$12001 $aGroups and representations$fJ. L. Alperin with Rowen B. Bell$1210 $aNew York$cSpringer$d1995$1215 $aX, 194 p.$d25 cm$v162 463 1$1001VAN0056035$12001 $aPermutation groups$fJohn D. Dixon, Brian Mortimer$1210 $aNew York$cSpringer$d1996$1215 $aXII, 346 p.$cill.$d25 cm$v163 463 1$1001VAN0054988$12001 $aAdditive number theory$ethe classical bases$fMelvyn B. Nathanson$1210 $aNew York$cSpringer$d1996$1215 $aXIV, 342 p.$d25 cm$v164 463 1$1001VAN0050862$12001 $aDifferential geometry$eCartan's generalization of Klein's Erlangen program$fR. W. Sharpe$gforeword by S. S. Chern$1210 $aNew York$cSpringer$d1997$1215 $aXIX, 421 p.$cill.$d24 cm$v166 463 1$1001VAN0048760$12001 $aField and Galois theory$fPatrick Morandi$1210 $aNew York$cSpringer$d1996$1215 $aXVI, 281 p.$d24 cm$v167 463 1$1001VAN0055900$12001 $aCombinatorial convexity and algebraic geometry$fGünter Ewald$1210 $aNew York$cSpringer$d1996$1215 $aXIV, 372 p.$cill.$d24 cm$v168 463 1$1001VAN0071781$12001 $aSheaf theory$fGlen E. Bredon$1205 $a2. ed$1210 $aNew York [etc.]$cSpringer$dc1997$1215 $aXI, 502 p.$d25 cm$v170 463 1$1001VAN0115325$12001 $aRiemannian geometry$fPeter Petersen$1205 $a3. ed$1210 $aCham$cSpringer$d2016$1215 $aXVIII, 499 p.$cill.$d24 cm$v171 463 1$1001VAN0053819$12001 $aRiemannian geometry$fPeter Petersen$1210 $aNew York$cSpringer$d1998$1215 $aXVI, 432 p.$cill.$d24 cm$v171 463 1$1001VAN0124119$12001 $aGraph theory$fReinhard Diestel$1205 $a5. ed$1210 $aBerlin$cSpringer$d2017$1215 $axviii, 428 p.$cill.$d24 cm$v173 463 1$1001VAN0056109$12001 $aGraph theory$fReinhard Diestel$1210 $aNew York [etc.]$cSpringer$d1997$1215 $aXIV, 286 p.$cill.$d24 cm$v173 463 1$1001VAN0056107$12001 $aGraph theory$fReinhard Diestel$1205 $a2. ed$1210 $aNew York$cSpringer$d2000$1215 $aXIV, 312 p.$cill.$d24 cm$v173 463 1$1001VAN0030095$12001 $aˆAn ‰introduction to knot theory$fW. B. Raymond Lickorish$1210 $aNew York$aLondon$cSpringer$d1997$1215 $aX, 201 p.$cill.$d25 cm$v175 463 1$1001VAN0053674$12001 $aRiemannian manifolds$ean introduction to curvature$fJohn M. Lee$1210 $aNew York$cSpringer$d1997$1215 $aXV, 224 p.$c88 ill.$d25 cm$v176 463 1$1001VAN0030497$12001 $aAnalytic number theory$fDonald J. Newman$1210 $aNew York$cSpringer$d1998$1215 $aVIII, 76 p.$d25 cm$v177 463 1$1001VAN0056150$12001 $aBanach algebra techniques in operator theory$fRonald G. Douglas$1205 $a2. ed$1210 $aNew York$cSpringer$d1998$1215 $aXVI, 194 p.$cill.$d24 cm$v179 463 1$1001VAN0024949$12001 $aMeasure theory$fPaul R. Halmos$1205 $aReprint$b1974$1210 $aNew York$cSpringer$d1950$1215 $aXI, 304 p.$d24 cm$v18 463 1$1001VAN0267396$12001 $aMeasure theory$fPaul R. Halmos$1205 $aReprint$b1974$1210 $aNew York$cSpringer$d1950$1215 $aXI, 304 p.$d24 cm$v18 463 1$1001VAN0050748$12001 $aˆA ‰course on Borel sets$fSashi M. Srivastava$1210 $aNew York$cSpringer$d1998$1215 $aXVI, 261 p.$d24 cm$v180 463 1$1001VAN0076534$12001 $aNumerical analysis$fRainer Kress$1210 $aNew York$cSpringer$d1998$1215 $aXII, 326 p.$cill.$d24 cm$v181 463 1$1001VAN0053750$12001 $aˆAn ‰introduction to Banach space theory$fRobert E. Megginson$1210 $aNew York$cSpringer$d1998$1215 $aXIX, 596 p.$cill.$d25 cm$v183 463 1$1001VAN0053023$12001 $aModern graph theory$fBéla Bollobás$1210 $aNew York$cSpringer$d1998$1215 $aXIII, 394 p$cill$d25 cm$1300 $aIncludes index$v184 463 1$1001VAN0055025$12001 $aUsing algebraic geometry$fDavid Cox, John Little, Donal O' Shea$1210 $aNew York$cSpringer$d1998$1215 $aXII, 499 p.$cill.$d25 cm$v185 463 1$1001VAN0052988$12001 $aLectures on the hyperreals$ean introduction to nonstandard analysis$fRobert Goldblatt$1210 $aNew York$cSpringer$d1998$1215 $aXIV, 289 p.$d24 cm$v188 463 1$1001VAN0268464$12001 $aˆA ‰Hilbert space problem book$fPaul R. Halmos$1205 $a2. ed. rev. and enl$1210 $aNew York$cSpringer-Verlag$d1982$1215 $axvii, 369 p.$d24 cm$v19 463 1$1001VAN0036101$12001 $aˆA ‰Hilbert space problem book$fPaul R. Halmos$1205 $a2. ed. rev. and enl$1210 $aNew York$cSpringer-Verlag$d1982$1215 $aXVII, 369 p.$d24 cm$v19 463 1$1001VAN0267785$12001 $aˆA ‰Hilbert space problem book$fPaul R. Halmos$1205 $aReprint$1210 $aNew York$cSpringer-Verlag$d1967 [stampa 1974]$1215 $axvii, 365 p.$d24 cm$1300 $aOriginally published by Van Nostrand, 1967$v19 463 1$1001VAN0060690$12001 $aProblems in algebraic number theory$fM. Ram Murty, Jody Esmonde$1205 $a2. ed$1210 $aNew York$cSpringer$d2005$1215 $aXVI, 352 p.$d24 cm$v190 463 1$1001VAN0065532$12001 $aFundamentals of differential geometry$fSerge Lang$1210 $aNew York$cSpringer$d1999$1215 $aXVII, 535 p.$d24 cm$v191 463 1$1001VAN0055614$12001 $aElements of functional analysis$fFrancis Hirsch, Gilles Lacombe$gtranslated by Silvio Levy$1210 $aNew York$cSpringer$d1999$1215 $aXIV, 393 p.$d25 cm$v192 463 1$1001VAN0024061$12001 $aAdvanced topics in computational number theory$fHenri Cohen$1210 $aNew York$cSpringer$d2000$1215 $aXV, 578 p.$d25 cm$v193 463 1$1001VAN0058059$12001 $aOne-parameter semigroups for linear evolution equations$fKlaus-Jochen Engel, Rainer Nagel$1210 $aNew York$cSpringer$d2000$1215 $aXXI, 586 p.$d24 cm$v194 463 1$1001VAN0024060$12001 $aElementary methods in number theory$fMelvyn B. Nathanson$1210 $aNew York$cSpringer$d2000$1215 $aXVIII, 513 p.$cill.$d24 cm$v195 463 1$1001VAN0053942$12001 $aBasic homological algebra$fM. Scott Osborne$1210 $aNew York$cSpringer$d2000$1215 $aX, 395 p.$d25 cm$v196 463 1$1001VAN0055894$12001 $aˆThe ‰geometry of schemes$fDavid Eisenbud, Joe Harris$1210 $aNew York$cSpringer$d2000$1215 $aX, 294 p.$cill.$d24 cm$v197 463 1$1001VAN0054044$12001 $aMeasure and category$ea survey of the analogies between topological and measure spaces$fJohn C. Oxtoby$1205 $a2. ed$1210 $aNew York$cSpringer$d1980$1215 $aIX, 106 p.$d24 cm$v2 463 1$1001VAN0267616$12001 $aMeasure and category$ea survey of the analogies between topological and measure spaces$fJohn C. Oxtoby$1210 $aNew York$cSpringer$d1971$1215 $aviii, 95 p.$d24 cm$v2 463 1$1001VAN0268350$12001 $aMeasure and category$ea survey of the analogies between topological and measure spaces$fJohn C. Oxtoby$1205 $a2. ed$1210 $aNew York$cSpringer$d1980$1215 $aix, 106 p.$d24 cm$v2 463 1$1001VAN0267509$12001 $aFibre bundles$fDale Husemöller$1205 $a2. ed$1210 $aNew York$cSpringer$d1964$1215 $axv, 327 p.$cill.$d24 cm$v20 463 1$1001VAN0055393$12001 $aFibre bundles$fDale Husemöller$1205 $a3. ed$1210 $aNew York$cSpringer$d1994$1215 $aXIX, 353 p.$cill.$d24 cm$v20 463 1$1001VAN0052115$12001 $aˆAn ‰introduction to Riemann-Finsler geometry$fD. Bao, S.-S. Chern, Z. Shen$1210 $aNew York$cSpringer$d2000$1215 $aXX, 431 p.$cill.$d24 cm$v200 463 1$1001VAN0055636$12001 $aDiophantine geometry$ean introduction$fMarc Hindry, Joseph H. Silverman$1210 $aNew York$cSpringer$d2000$1215 $aXIII, 558 p.$d24 cm$v201 463 1$1001VAN0051657$12001 $aˆThe ‰Symmetric group$erepresentations, combinatorial algorithms, and symmetric functions$fBruce E. Sagan$1205 $a2. ed$1210 $aNew York$cSpringer$d2001$1215 $aXV, 238 p.$d24 cm$v203 463 1$1001VAN0071686$12001 $aGalois theory$fJean-Pierre Escofier$1210 $aNew York$cSpringer$d2001$1215 $aXIV, 280 p.$d24 cm$v204 463 1$1001VAN0023578$12001 $aAnalysis for applied mathematics$fWard Cheney$1210 $aNew York$cSpringer$d2001$1215 $aVIII, 444 p.$cill.$d25 cm$v208 463 1$1001VAN0056201$12001 $aLinear algebraic groups$fJames E. Humphreys$1205 $aCorrected 4. printing$1210 $aNew York $cSpringer$d1975 [stampa 1995]$1215 $aXVI, 253 p.$d24 cm$v21 463 1$1001VAN0267985$12001 $aLinear algebraic groups$fJames E. Humphreys$1210 $aNew York $cSpringer$d1975$1215 $axvi, 248 p.$d24 cm$v21 463 1$1001VAN0056949$12001 $aNumber theory in function fields$fMichael Rosen$1210 $aNew York$cSpringer$d2002$1215 $aXII, 358 p.$d24 cm$v210 463 1$1001VAN0056978$12001 $aAlgebra$fSerge Lang$1205 $aRevised 3. ed$1210 $aNew York$cSpringer$d2002$1215 $aXV, 914 p.$d24 cm$v211 463 1$1001VAN0055977$12001 $aPartial differential equations$fJurgen Jost$1210 $aNew York$cSpringer$d2002$1215 $aXI, 325 p.$cill.$d24 cm$v214 463 1$1001VAN0060304$12001 $aMatrices$etheory and applications$fDenis Serre$1210 $aNew York$cSpringer$d2002$1215 $aXV, 202 p.$d24 cm$v216 463 1$1001VAN0052479$12001 $aModel theory$ean introduction$fDavid Marker$1210 $aNew York$cSpringer$d2002$1215 $aVIII, 342 p.$d24 cm$v217 463 1$1001VAN0056943$12001 $aFourier analysis and its applications$fAnders Vretblad$1210 $aNew York$cSpringer$d2006$1215 $aXI, 269 p.$d25 cm$v223 463 1$1001VAN0047564$12001 $aMetric structures in differential geometry$fGerard Walschap$1210 $aNew York$cSpringer$d2004$1215 $aVIII, 226 p.$cill.$d25 cm$v224 463 1$1001VAN0060314$12001 $aLie groups$fDaniel Bump$1210 $aNew York$cSpringer$d2004$1215 $aXI, 451 p.$d24 cm$v225 463 1$1001VAN0060485$12001 $aSpaces of Holomorphic functions in the unit ball$fKehe Zhu$1210 $aNew York$cSpringer$d2005$1215 $aX, 271 p.$d24 cm$v226 463 1$1001VAN0046159$12001 $aCombinatorial commutative algebra$fEzra Miller, Bernd Sturmfels$1210 $aNew York$cSpringer$d2005$1215 $aXIV, 417 p.$cill.$d24 cm$v227 463 1$1001VAN0045926$12001 $aˆA ‰first course in modular forms$fFred Diamond, Jerry Shurman$1210 $aNew York$cSpringer$d2005$1215 $aXV, 436 p.$d24 cm$v228 463 1$1001VAN0046096$12001 $aˆThe ‰geometry of Syzygies$ea second course in commutative algebra and algebraic geometry$fDavid Eisenbud$1210 $aNew York$cSpringer$d2005$1215 $aXVI, 243 p.$cill.$d24 cm$v229 463 1$1001VAN0049343$12001 $aLinear algebra$fWerner H. Greub$1205 $a4. ed.$brev. 2. print$1210 $aNew York$cSpringer$d1981$1215 $aXVI, 451 p.$cill.$d24 cm$v23 463 1$1001VAN0267983$12001 $aLinear algebra$fWerner H. Greub$1205 $a4. ed$1210 $aNew York$cSpringer$d1975$1215 $axviii, 452 p.$cill.$d24 cm$v23 463 1$1001VAN0045591$12001 $aCombinatorics of Coxeter groups$fAnders Bjorner, Francesco Brenti$1210 $aNew York$cSpringer$d2005$1215 $aXII, 363 p.$cill.$d24 cm$v231 463 1$1001VAN0045618$12001 $aˆAn ‰introduction to number theory$fGraham Everest, Thomas Ward$1210 $aLondon$cSpringer$d2005$1215 $aIX, 294 p.$cill.$d24 cm$v232 463 1$1001VAN0071760$12001 $aTopics in Banach space theory$fFernando Albiac, Nigel J. Kalton$1210 $aNew York$cSpringer$d2006$1215 $aXI, 373 p.$d24 cm$v233 463 1$1001VAN0115447$12001 $aTopics in Banach space theory$fFernando Albiac, Nigel J. Kalton$1205 $a2. ed$1210 $a[Cham]$cSpringer$d2016$1215 $aXX, 508 p.$cill.$d24 cm$v233 463 1$1001VAN0065560$12001 $aAnalysis and probability$ewavelets, signals, fractals$fPalle E.T. Jorgensen$gwith graphics by Brian Treadway$1210 $aNew York$cSpringer$d2006$1215 $axliv, 276 p.$cill.$d24 cm$v234 463 1$1001VAN0076485$12001 $aAbstract algebra$fPierre Antoine Grillet$1205 $a2. ed$1210 $aNew York$cSpringer$d2007$1215 $aXII, 669 p.$d24 cm$v242 463 1$1001VAN0076484$12001 $aGraph theory$fJ. A. Bondy, U. S. R. Murty$1210 $aNew York$cSpringer$d2008$1215 $aXIV, 657 p.$d24 cm$v244 463 1$1001VAN0076966$12001 $aBuildings$etheory and applications$fPeter Abramenko, Kenneth S. Brown$1210 $aNew York$cSpringer$d2008$1215 $aXXI, 747 p.$d24 cm$v248 463 1$1001VAN0029922$12001 $aReal and abstract analysis$ea modern treatment of the theory of functions of a real variable$fEdwin Hewitt, Karl Stromberg$1210 $aBerlin$cSpringer-Verlag$d1965$1215 $aX, 476 p.$cill.$d24 cm$v25 463 1$1001VAN0036096$12001 $aGeneral topology$fJohn L. Kelley$1210 $aNew York$cSpringer$d1975$1215 $aXIV, 298 p.$d25 cm$v27 463 1$1001VAN0268012$12001 $aDifferential topology$fMorris W. Hirsch$1210 $aNew York$cSpringer$d1976$1215 $ax, 221 p.$d24 cm$v33 463 1$1001VAN0055610$12001 $aDifferential topology$fMorris W. Hirsch$1210 $aNew York$cSpringer$d1976$1215 $aX, 221 p.$d24 cm$v33 463 1$1001VAN0056350$12001 $aˆA ‰course in homological algebra$fP. J. Hilton, U. Stammbach$1205 $a2.ed$1210 $aNew York [etc.]$cSpringer$d1997$1215 $aXII, 364 p.$d24 cm$v4 463 1$1001VAN0267588$12001 $aˆA ‰course in homological algebra$fP. J. Hilton, U. Stammbach$1205 $aNew $1210 $a : Springer, 19$c - XII, $d4 p.$1215 $a4 cm$v4 463 1$1001VAN0028842$12001 $aLinear representations of finite groups$fJean-Pierre Serre$gtranslated from the french by Leonard L. Scott$1210 $aNew York$cSpringer$d1977$dstampa 1993$1215 $aX, 170 p.$d24 cm$v42 463 1$1001VAN0268102$12001 $aLinear representations of finite groups$fJean-Pierre Serre$gtranslated from the french by Leonard L. Scott$1210 $aNew York$cSpringer$d1977$1215 $aX, 170 p.$d24 cm$v42 463 1$1001VAN0055682$12001 $aRings of continuous functions$fLeonard Gillman, Meyer Jerison$1210 $aNew York$cSpringer$d1976$1215 $aXIII, 300 p.$d25 cm$v43 463 1$1001VAN0024159$12000 $a1$fM. Loeve$1205 $a4. ed$1210 $aNew York$cSpringer$d1977$1215 $aXVII, 425 p.$d25 cm$v45 463 1$1001VAN0268117$12000 $a1$fM. Loeve$1205 $a4. ed$1210 $aNew York$cSpringer$d1977$1215 $axvii, 425 p.$d25 cm$v45 463 1$1001VAN0024157$12000 $a2$fM. Loeve$1205 $a4. ed$1210 $aNew York$cSpringer$d1978$1215 $aXVI, 413 p.$d25 cm$v46 463 1$1001VAN0268164$12001 $aCategories for the working mathematician$fSaunders Mac Lane$1205 $a2. ed$1210 $aNew York$cSpringer$d1978$1215 $axii, 318 p.$cill.$d25 cm$v5 463 1$1001VAN0054465$12001 $aCategories for the working mathematician$fSaunders Mac Lane$1210 $aNew York$cSpringer$d1971$1215 $aXII, 314 p.$cill.$d25 cm$v5 463 1$1001VAN0267594$12001 $aCategories for the working mathematician$fSaunders Mac Lane$1210 $aNew York$cSpringer$d1971$1215 $aXII, 314 p.$cill.$d25 cm$v5 463 1$1001VAN0029563$12001 $aFermat's last theorem$ea genetic introduction to algebraic number theory$fHarold M. Edwards$1210 $aNew York$aHeidelberg ; Berlin$cSpringer$d1977$1215 $aXV, 410 p.$d24 cm$v50 463 1$1001VAN0268050$12001 $aAlgebraic geometry$fRobin Hartshorne$1210 $aNew York$cSpringer$d1977$1215 $axvi, 496 p.$cill.$d24 cm$v52 463 1$1001VAN0051852$12001 $aAlgebraic geometry$fRobin Hartshorne$1205 $a6. corrected printing$1210 $aNew York$cSpringer$d1977 [stampa 1993]$1215 $aXVI, 496 p.$cill.$d24 cm$v52 463 1$1001VAN0036757$12001 $aAlgebraic topology$ean introduction$fWilliam S. Massey$1210 $aNew York$cSpringer$d1967$1215 $aXXI, 261 p.$cill.$d24 cm$v56 463 1$1001VAN0269211$12001 $aMathematical methods of classical mechanics$fV. I. Arnold$gTranslated by K. Vogtmann and A. Weinstein$1205 $a2. ed$1210 $aNew York$cSpringer$d1989$1215 $axvi, 520 p.$cill.$d24 cm$v60 463 1$1001VAN0268213$12001 $aMathematical methods of classical mechanics$fV. I. Arnold$gTranslated by K. Vogtmann and A. Weinstein$1210 $aNew York$cSpringer$d1978$1215 $ax, 464 p.$cill.$d24 cm$v60 463 1$1001VAN0071713$12001 $aMathematical methods of classical mechanics$fV. I. Arnold$gTranslated by K. Vogtmann and A. Weinstein$1205 $a2. ed$1210 $aNew York$cSpringer$d1989$1215 $aIX, 516 p.$cill.$d24 cm$v60 463 1$1001VAN0047473$12001 $aElements of homotopy theory$fGeorge W. Whitehead$1210 $aNew York$cSpringer$d1978$1215 $aXXI, 744 p.$cill.$d25 cm$v61 463 1$1001VAN0268175$12001 $aElements of homotopy theory$fGeorge W. Whitehead$1210 $aNew York$cSpringer$d1978$1215 $aXXI, 744 p.$cill.$d25 cm$v61 463 1$1001VAN0055731$12001 $aFundamentals of the theory of groups$fM. I. Kargapolov, Ju. I. Merzljakov$1210 $aNew York [etc.]$cSpringer$d1979$1215 $aXVII, 203 p.$d25 cm$v62 463 1$1001VAN0053021$12001 $aGraph theory$ean introductory course$fBéla Bollobás$1210 $aNew York$cSpringer Verlag$d1979$1215 $aX, 180 p.$cill.$d24 cm$v63 463 1$1001VAN0268276$12001 $aLocal fields$fJean-Pierre Serre$gtranslated from the French by Marvin Jay Greenberg$1210 $aNew York$cSpringer-Verlag$d1979$1215 $aviii, 241 p.$d25 cm$v67 463 1$1001VAN0049365$12001 $aLocal fields$fJean-Pierre Serre$gtranslated from the French by Marvin Jay Greenberg$1205 $aRepr$1210 $aNew York$cSpringer-Verlag$d1979 [stampa 1995]$1215 $aVIII, 241 p.$d25 cm$v67 463 1$1001VAN0029401$12001 $aLinear operators in Hilbert spaces$fJoachim Weidmann$gtranslated by Joseph Szucs$1210 $aNew York$cSpringer$d1980$1215 $aXIII, 402 p.$d23 cm$v68 463 1$1001VAN0268348$12001 $aLinear operators in Hilbert spaces$fJoachim Weidmann$gtranslated by Joseph Szucs$1210 $aNew York$cSpringer$d1980$1215 $axiii, 402 p.$d23 cm$v68 463 1$1001VAN0030556$12001 $aˆA ‰course in arithmetic$fJean-Pierre Serre$1205 $aCorrected 4. printing$1210 $aNew York$cSpringer$d1973 [stampa 1993]$1215 $aVIII, 115 p.$d24 cm$v7 463 1$1001VAN0267719$12001 $aˆA ‰course in arithmetic$fJean-Pierre Serre$1210 $aNew York$cSpringer$d1973$1215 $aix, 119 p.$d24 cm$v7 463 1$1001VAN0030559$12001 $aGalois cohomology$fJean-Pierre Serre$gtranslated from the french by Patrick Ion$1210 $aBerlin$cSpringer$d1997$1215 $aX, 210 p.$d24 cm$v7 463 1$1001VAN0060689$12001 $aRiemann surfaces$fH. M. Farkas, I. Kra$1205 $a2. ed$1210 $aNew York$cSpringer$d1992$1215 $aXVI, 363 p.$cill.$d24 cm$v71 463 1$1001VAN0268354$12001 $aRiemann surfaces$fH. M. Farkas, I. Kra$1210 $aNew York$cSpringer$d1980$1215 $axi, 340 p.$cill.$d24 cm$v71 463 1$1001VAN0050664$12001 $aClassical topology and combinatorial group theory$fJohn Stillwell$gillustrated with 312 figures by the author$1205 $a2. ed$1210 $aNew York$cSpringer$d1993$1215 $aXII, 334 p.$cill.$d24 cm$v72 463 1$1001VAN0268317$12001 $aClassical topology and combinatorial group theory$fJohn Stillwell$gillustrated with 312 figures by the author$1210 $aNew York$cSpringer$d1980$1215 $axii, 301 p.$cill.$d24 cm$v72 463 1$1001VAN0029954$12001 $aAlgebra$fThomas W. Hungerford$1210 $aNew York [etc.]$cSpringer$d1974$1215 $aXXIII, 502 p.$d24 cm$v73 463 1$1001VAN0267786$12001 $aAlgebra$fThomas W. Hungerford$1210 $aNew York$cSpringer$d1974$1215 $axxiii, 502 p.$d24 cm$v73 463 1$1001VAN0055551$12001 $aBasic theory of algebraic groups and Lie algebras$fGerhard P. Hochschild$1210 $aNew York$cSpringer$d1981$1215 $aVIII, 267 p$d23 cm$v75 463 1$1001VAN0268382$12001 $aBasic theory of algebraic groups and Lie algebras$fGerhard P. Hochschild$1210 $aNew York$cSpringer$d1981$1215 $aVIII, 267 p$d23 cm$v75 463 1$1001VAN0029373$12001 $aˆA ‰course in universal algebra$fStanley Burris, H. P. Sankappanavar$1210 $aNew York$cSpringer$d1981$1215 $aXVI, 276 p$cill.$d23 cm$v78 463 1$1001VAN0047561$12001 $aˆAn ‰introduction to ergodic theory$fPeter Walters$1210 $aNew York$cSpringer$d2000$1215 $aIX, 250 p.$d24 cm$v79 463 1$1001VAN0052406$12001 $aˆA ‰course in the theory of groups$fDerek J. S. Robinson$1205 $a2. ed$1210 $aNew York$cSpringer$d1996$1215 $aXVII, 499 p.$cill.$d25 cm$v80 463 1$1001VAN0268398$12001 $aLectures on Riemann surfaces$fOtto Forster$gtranslated by Bruce Gilligan$1210 $aNew York $cSpringer$d1981$1215 $aviii, 254 p.$cill.$d24 cm$v81 463 1$1001VAN0056326$12001 $aLectures on Riemann surfaces$fOtto Forster$gtranslated by Bruce Gilligan$1210 $aNew York $cSpringer$d1981$1215 $aVIII, 254 p.$cill.$d24 cm$v81 463 1$1001VAN0268497$12001 $aDifferential forms in algebraic topology$fRaoul Bott, Loring W. Tu$1210 $aNew York$cSpringer$d1982$1215 $axiv, 331 p.$cill.$d24 cm$v82 463 1$1001VAN0053196$12001 $aDifferential forms in algebraic topology$fRaoul Bott, Loring W. Tu$1210 $aNew York$cSpringer$d1982$1215 $aXIV, 331 p.$cill.$d24 cm$v82 463 1$1001VAN0029957$12001 $aˆA ‰classical introduction to modern number theory$fKenneth Ireland, Michael Rosen$1205 $a2. ed$1210 $aBerlin$cSpringer$d1990$1215 $aXIV, 389 p.$d24 cm$v84 463 1$1001VAN0268463$12001 $aˆA ‰classical introduction to modern number theory$fKenneth Ireland, Michael Rosen$1210 $aNew York$cSpringer$d1982$1215 $axiii, 344 p.$d24 cm$v84 463 1$1001VAN0055801$12000 $a2$fR. E. Edwards$1205 $a2. ed$1210 $aNew York$cSpringer$d1982$1215 $aXI, 369 p.$d25 cm$v85 463 1$1001VAN0262146$12001 $aIntroduction to coding theory$fJ. H. van Lint$1210 $aBerlin$cSpringer$d1982$1215 $aix, 174 p.$d24 cm$v86 463 1$1001VAN0042462$12001 $aIntroduction to coding theory$fJ. H. van Lint - 2. ed$1210 $aBerlin$cSpringer$d1992$1215 $aXI, 183 p.$d25 cm$v86 463 1$1001VAN0268492$12001 $aCohomology of groups$fKenneth S. Brown$1210 $aNew York$cSpringer$d1982$1215 $aX, 306 p.$cill.$d24 cm$v87 463 1$1001VAN0053539$12001 $aCohomology of groups$fKenneth S. Brown$1210 $aNew York$cSpringer$d1982$1215 $aX, 306 p.$cill.$d24 cm$v87 463 1$1001VAN0030487$12001 $aAssociative algebras$fRichard S. Pierce$1210 $aNew York$cSpringer$d1982$1215 $aXII, 436 p.$d24 cm$v88 463 1$1001VAN0268487$12001 $aAssociative algebras$fRichard S. Pierce$1210 $aNew York$cSpringer$d1982$1215 $axii, 436 p.$d24 cm$v88 463 1$1001VAN0267640$12001 $aIntroduction to lie algebras and representation theory$fJames E. Humphreys$1210 $aNew York$cSpringer$d1972$1215 $axiii, 173 p.$cill.$d24 cm$v9 463 1$1001VAN0055441$12001 $aIntroduction to lie algebras and representation theory$fJames E. Humphreys$1205 $a7. corrected printing$1210 $aNew York$cSpringer$d1997$1215 $aXII, 173 p.$cill.$d25 cm$v9 463 1$1001VAN0268562$12001 $aˆAn ‰introduction to convex polytopes$fArne Brøndsted$1210 $aNew York$cSpringer$d1983$1215 $aviii, 160 p.$d25 cm$v90 463 1$1001VAN0053493$12001 $aˆAn ‰introduction to convex polytopes$fArne Brøndsted$1210 $aNew York$cSpringer$d1983$1215 $aVIII, 160 p.$d25 cm$v90 463 1$1001VAN0268588$12001 $aFoundations of differentiable manifolds and lie groups$fFrank W. Warner$1210 $aNew York$cSpringer$d1983$1215 $aix, 272 p.$cill.$d24 cm$v94 463 1$1001VAN0047556$12001 $aFoundations of differentiable manifolds and lie groups$fFrank W. Warner$1210 $aNew York$cSpringer$d1983$1215 $aIX, 272 p.$cill.$d24 cm$v94 463 1$1001VAN0050872$12001 $aProbability$fA. N. Shiryaev$gtranslated by R. P. Boas$1205 $a2. ed$1210 $aNew York$cSpringer$d1996$1215 $aXVI, 621 p.$d25 cm$v95 463 1$1001VAN0053470$12001 $aRepresentations of compact Lie groups$fTheodor Brocker, Tammo tom Dieck$1210 $aNew York$cSpringer$d1985$1215 $aX, 313 p.$cill.$d25 cm$v98 463 1$1001VAN0263608$12001 $aRepresentations of compact Lie groups$fTheodor Brocker, Tammo Tom Dieck$1210 $aBerlin$cSpringer$d1985$1215 $aX, 313 p.$cill.$d25 cm$v98 463 1$1001VAN0268764$12001 $aFinite reflection groups$fL. C. Grove, C. T. Benson$1205 $a2. ed$1210 $aNew York$cSpringer$d1985$1215 $ax, 133 p.$d25 cm$v99 463 1$1001VAN0051774$12001 $aFinite reflection groups$fL. C. Grove, C. T. Benson$1205 $a2. ed$1210 $aNew York$cSpringer$d1985$1215 $aX, 133 p.$d25 cm$v99 463 1$1001VAN0049530$12001 $aGraduate texts in mathematics. Readings in mathematics$1210 $aNew York$cSpringer 463 1$1001VAN0268116$12001 $aProbability theory$fM. Loeve$1210 $aNew York$cSpringer$1215 $avolumi$d25 cm 463 1$1001VAN0024154$12001 $aProbability theory$fM. Loeve$1210 $aNew York$cSpringer$1215 $avolumi$d25 cm 517 1$3VAN0241122$aGTM 620 $aUS$dNew York$3VANL000011 712 $aSpringer $3VANV108073$4650 801 $aIT$bSOL$c20240719$gRICA 856 4 $uhttps://www.springer.com/series/136$zhttps://www.springer.com/series/136 912 $aVAN0023579 996 $aGraduate texts in mathematics$9104155 997 $aUNICAMPANIA