LEADER 01991nam0 22004333i 450 001 VAN00219144 005 20240806101253.542 017 70$2N$a9783030257224 100 $a20210929d2019 |0itac50 ba 101 $aeng 102 $aCH 105 $a|||| ||||| 200 1 $aStructure of Nucleon Excited States from Lattice QCD$eDoctoral Thesis accepted by The University of Adelaide, Adelaide, Australia$fFinn M. Stokes 210 $aCham$cSpringer$d2019 215 $axiii, 237 p.$cill.$d24 cm 410 1$1001VAN00104193$12001 $aSpringer theses$erecognizing outstanding Ph.D. research$1210 $aBerlin$cSpringer$d2010- 500 1$3VAN00219145$aStructure of Nucleon Excited States from Lattice QCD$91873066 606 $a81-XX$xQuantum theory [MSC 2020]$3VANC019967$2MF 606 $a81V05$xStrong interaction, including quantum chromodynamics [MSC 2020]$3VANC034061$2MF 610 $aBaryon physics$9KW:K 610 $aCalculation of Baryon properties$9KW:K 610 $aCentre Domains$9KW:K 610 $aCorrelation Matrix$9KW:K 610 $aElectromagnetic Form Factors$9KW:K 610 $aLattice QCD$9KW:K 610 $aNon-trivial QCD vacuum$9KW:K 610 $aParity-Expanded Variational Analysis$9KW:K 610 $aQCD simulations$9KW:K 620 $aCH$dCham$3VANL001889 700 1$aStokes$bFinn M.$3VANV186311$0838579 712 $aSpringer $3VANV108073$4650 801 $aIT$bSOL$c20241115$gRICA 856 4 $uhttp://doi.org/10.1007/978-3-030-25722-4$zE-book ? Accesso al full-text attraverso riconoscimento IP di Ateneo, proxy e/o Shibboleth 899 $aBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$1IT-CE0120$2VAN08 912 $fN 912 $aVAN00219144 950 $aBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$d08DLOAD e-book 4034 $e08eMF4034 20210929 996 $aStructure of Nucleon Excited States from Lattice QCD$91873066 997 $aUNICAMPANIA LEADER 02121nam0 2200457 i 450 001 VAN00054608 005 20250324115122.182 010 $a978-35-400-0001-3 100 $a20061018d2002 |0itac50 ba 101 $aeng 102 $aDE 105 $a|||| ||||| 200 1 $aAnalytic capacity, rectifiability, Menger curvature and the Cauchy integral$fHerve' Pajot 210 $aBerlin$cSpringer$d2002 215 $aXII, 118 p.$d24 cm 300 $aPubblicazione disponibile anche in formato elettronico 461 1$1001VAN00102250$12001 $aLecture notes in mathematics$1210 $aBerlin [etc.]$cSpringer$v1799 500 1$3VAN00234429$aAnalytic capacity, rectifiability, Menger curvature and the Cauchy integral$9262889 606 $a28A75$xLength, area, volume, other geometric measure theory [MSC 2020]$3VANC021494$2MF 606 $a30C85$xCapacity and harmonic measure in the complex plane [MSC 2020]$3VANC022339$2MF 606 $a42B20$xSingular and oscillatory integrals (Calderón-Zygmund, etc.) [MSC 2020]$3VANC021614$2MF 610 $aAnalysis$9KW:K 610 $aAnalytic capacity$9KW:K 610 $aCauchy integral$9KW:K 610 $aComplex Analysis$9KW:K 610 $aHarmonic analysis$9KW:K 610 $aMenger curvature$9KW:K 610 $aRectifiability$9KW:K 610 $aSingular integral operators$9KW:K 610 $aSingular integrals$9KW:K 620 $dBerlin$3VANL000066 700 1$aPajot$bHerve$3VANV043201$0352588 712 $aSpringer $3VANV108073$4650 801 $aIT$bSOL$c20250328$gRICA 856 4 $u/sebina/repository/catalogazione/documenti/ID 54608.pdf$zID 54608.pdf 856 4 $uhttps://doi.org/10.1007/b84244$zhttps://doi.org/10.1007/b84244 899 $aBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$1IT-CE0120$2VAN08 912 $aVAN00054608 950 $aBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$d08PREST 28-XX 3148 $e08 6062 I 20061018 996 $aAnalytic capacity, rectifiability, Menger curvature and the Cauchy integral$9262889 997 $aUNICAMPANIA