LEADER 02853nam0 22005893i 450 001 VAN00191419 005 20240806101131.835 017 70$2N$a9783319494999 100 $a20210723d2017 |0itac50 ba 101 $aeng 102 $aCH 105 $a|||| ||||| 200 1 $aReflected Brownian Motions in the KPZ Universality Class$fThomas Weiss, Patrik Ferrari, Herbert Spohn 210 $aCham$cSpringer$d2017 215 $avii, 118 p.$d24 cm 410 1$1001VAN00104274$12001 $aSpringerBriefs in Mathematical Physics$1210 $aBerlin [etc.]$cSpringer$d2014-$v18 500 1$3VAN00191422$aReflected Brownian Motions in the KPZ Universality Class$91833192 606 $a60H15$xStochastic partial differential equations (aspects of stochastic analysis) [MSC 2020]$3VANC021488$2MF 606 $a60K35$xInteracting random processes; statistical mechanics type models; percolation theory [MSC 2020]$3VANC019993$2MF 606 $a82-XX$xStatistical mechanics, structure of matter [MSC 2020]$3VANC021931$2MF 606 $a82C22$xInteracting particle systems in time-dependent statistical mechanics [MSC 2020]$3VANC025064$2MF 606 $a82C23$xExactly solvable dynamic models in time-dependent statistical mechanics [MSC 2020]$3VANC036430$2MF 610 $aAiry processes$9KW:K 610 $aBethe Ansatz$9KW:K 610 $aContour integration$9KW:K 610 $aDeterminantal point process$9KW:K 610 $aDeterminantal structure$9KW:K 610 $aEynard-Metha Theorem$9KW:K 610 $aFredholm determinants$9KW:K 610 $aKardar-Parisi-Zhang equation$9KW:K 610 $aLast passage percolation$9KW:K 610 $aPoisson initial conditions$9KW:K 610 $aPolynuclear growth model$9KW:K 610 $aQuantum integrability$9KW:K 610 $aSkorokhod construction$9KW:K 610 $aSteepest descent$9KW:K 610 $aStochastic Partial Differential Equations$9KW:K 610 $aTASEP model$9KW:K 610 $aTotally asymmetric simple exclusion process$9KW:K 620 $aCH$dCham$3VANL001889 700 1$aWeiss$bThomas$3VANV169832$0823916 701 1$aFerrari$bPatrik$3VANV169833$0823917 701 1$aSpohn$bHerbert$3VANV169834$061175 712 $aSpringer $3VANV108073$4650 801 $aIT$bSOL$c20241115$gRICA 856 4 $uhttp://doi.org/10.1007/978-3-319-49499-9$zE-book ? Accesso al full-text attraverso riconoscimento IP di Ateneo, proxy e/o Shibboleth 899 $aBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$1IT-CE0120$2VAN08 912 $fN 912 $aVAN00191419 950 $aBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$d08DLOAD e-book 3259 $e08eMF3259 20210723 996 $aReflected Brownian Motions in the KPZ Universality Class$91833192 997 $aUNICAMPANIA