LEADER 01184nam0 22002891i 450 001 VAN0017717 005 20060109120000.0 010 $a88-7078-608-0 100 $a20040611d1999 |0itac50 ba 101 $aita 102 $aIT 105 $a|||| ||||| 200 1 $aCompendio di criminologia$fGianluigi Ponti 205 $a4. ed. riv. ed aggiornata$fcon la collaborazione di Isabella Merzagora 210 $aMilano$cRaffaello Cortina$d[1999] 215 $aXX, 709 p.$d24 cm. 620 $dMilano$3VANL000284 700 1$aPonti$bGianluigi$3VANV000867$0457146 702 1$aMerzagora$bIsabella$3VANV000868 712 $aCortina, Raffaello$3VANV109008$4650 790 1$aMerzagora Betsos, Isabella$zMerzagora, Isabella$3VANV019245 801 $aIT$bSOL$c20230616$gRICA 912 $aVAN0017717 950 $aBIBLIOTECA DEL DIPARTIMENTO DI GIURISPRUDENZA$d00CONS II.C.17 $e00 24997 20040611 950 $aBIBLIOTECA DEL DIPARTIMENTO DI GIURISPRUDENZA$d00CONS II.C.17 bis $e00 23947 20041221 996 $aCompendio di criminologia$9820394 997 $aUNICAMPANIA LEADER 02944nam2 22006373i 450 001 VAN00277503 005 20250527122921.289 017 70$2N$a9783031059506 100 $a20240610d2022 |0itac50 ba 101 $aeng 102 $aCH 105 $a|||| ||||| 200 1 $aˆ1: A ‰Sharp Divergence Theorem with Nontangential Pointwise Traces$fDorina Mitrea, Irina Mitrea, Marius Mitrea 210 $aCham$cSpringer$d2022 215 $axxviii, 924 p.$cill.$d24 cm 410 1$1001VAN00102857$12001 $aDevelopments in Mathematics$1210 $aBerlin [etc.]$cSpringer$d1998-$v72 461 1$1001VAN00277499$12001 $aGeometric Harmonic Analysis$fDorina Mitrea, Irina Mitrea, Marius Mitrea$1210 $aCham$cSpringer$d2022-2023$1215 $a5 volumi$cill.$d24 cm$v1 606 $a15A66$xClifford algebras, spinors [MSC 2020]$3VANC022018$2MF 606 $a26-XX$xReal functions [MSC 2020]$3VANC019778$2MF 606 $a35-XX$xPartial differential equations [MSC 2020]$3VANC019763$2MF 606 $a35Jxx$xElliptic equations and elliptic systems [MSC 2020]$3VANC022717$2MF 606 $a42-XX$xHarmonic analysis on Euclidean spaces [MSC 2020]$3VANC019851$2MF 606 $a42Bxx$xHarmonic analysis in several variables [MSC 2020]$3VANC023080$2MF 610 $aAhlfors regular domain$9KW:K 610 $aBounded mean oscillations$9KW:K 610 $aClifford algebras$9KW:K 610 $aDifferential Forms$9KW:K 610 $aDivergence Theorem$9KW:K 610 $aFirst-order system$9KW:K 610 $aGauss-Green theorem$9KW:K 610 $aHardy-Littlewood maximal function$9KW:K 610 $aIntegrations$9KW:K 610 $aNTA domain$9KW:K 610 $aNontangential maximal function$9KW:K 610 $aNontangentially accessible boundary$9KW:K 610 $aQuasi-metric spaces$9KW:K 610 $aRegular SKT domain$9KW:K 610 $aReifenberg flat domain$9KW:K 610 $aRiemannian manifolds$9KW:K 610 $aSpaces of homogenous type$9KW:K 610 $aStokes? theorem$9KW:K 610 $aUniform domain$9KW:K 610 $aVanishing mean oscillations$9KW:K 620 $aCH$dCham$3VANL001889 700 1$aMitrea$bDorina$3VANV041937$0521700 701 1$aMitrea$bIrina$3VANV076542$0479684 701 1$aMitrea$bMarius$3VANV041938$0441111 712 $aSpringer $3VANV108073$4650 801 $aIT$bSOL$c20251121$gRICA 856 4 $uhttps://doi.org/10.1007/978-3-031-05950-6$zE-book ? Accesso al full-text attraverso riconoscimento IP di Ateneo, proxy e/o Shibboleth 899 $aBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$1IT-CE0120$2VAN08 912 $fN 912 $aVAN00277503 950 $aBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$d08DLOAD e-Book 8738 $e08eMF8738 20240618 996 $aSharp Divergence Theorem with Nontangential Pointwise Traces$94286179 997 $aUNICAMPANIA