LEADER 03058nam0 22005773i 450 001 VAN0268339 005 20240319041702.845 017 70$2N$a9781461380986 100 $a20231204d1980 |0itac50 ba 101 $aeng 102 $aUS 105 $a|||| ||||| 200 1 $aFunction Theory in the Unit Ball of ?n$fWalter Rudin 210 $aNew York$cSpringer$d1980 215 $axiii, 438 p.$cill.$d24 cm 410 1$1001VAN0024107$12001 $aGrundlehren der mathematischen Wissenschaften$eA series of comprehensive texts in mathematics$1210 $aBerlin [etc.]$cSpringer$v241 606 $a32M05$xComplex Lie groups, group actions on complex spaces [MSC 2020]$3VANC020772$2MF 606 $a32A40$xBoundary behavior of holomorphic functions of several complex variables [MSC 2020]$3VANC021631$2MF 606 $a32A10$xHolomorphic functions of several complex variables [MSC 2020]$3VANC022582$2MF 606 $a32A25$xIntegral representations; canonical kernels (Szegó, Bergman, etc.) [MSC 2020]$3VANC022689$2MF 606 $a32W05$x$\overline\partial$ and $\overline\partial$-Neumann operators [MSC 2020]$3VANC023494$2MF 606 $a32A38$xAlgebras of holomorphic functions of several complex variables [MSC 2020]$3VANC023500$2MF 606 $a32A22$xNevanlinna theory; growth estimates; other inequalities of several complex variables [MSC 2020]$3VANC023501$2MF 606 $a32E35$xGlobal boundary behavior of holomorphic functions of several complex variables [MSC 2020]$3VANC023503$2MF 606 $a32U05$xPlurisubharmonic functions and generalizations [MSC 2020]$3VANC023504$2MF 606 $a32A35$x$H^p$-spaces, Nevanlinna spaces of functions in several complex variables [MSC 2020]$3VANC024954$2MF 606 $a32-XX$xSeveral complex variables and analytic spaces [MSC 2020]$3VANC024999$2MF 606 $a32Hxx$xHolomorphic mappings and correspondences [MSC 2020]$3VANC026729$2MF 610 $aComplex Analysis$9KW:K 610 $aConvergence$9KW:K 610 $aDifferential equations$9KW:K 610 $aFunction$9KW:K 610 $aFunction Theory$9KW:K 610 $aHolomorphic Functions$9KW:K 610 $aIntegrals$9KW:K 610 $aInterpolation$9KW:K 610 $aMaximum$9KW:K 610 $aMinimum$9KW:K 610 $aOperators$9KW:K 610 $aSmooth functions$9KW:K 620 $aUS$dNew York$3VANL000011 700 1$aRudin$bWalter$f1921-2010$3VANV029663$01759 712 $aSpringer $3VANV108073$4650 801 $aIT$bSOL$c20240614$gRICA 856 4 $uhttps://doi.org/10.1007/978-1-4613-8098-6$zE-book ? Accesso al full-text attraverso riconoscimento IP di Ateneo, proxy e/o Shibboleth 899 $aBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$1IT-CE0120$2VAN08 912 $fN 912 $aVAN0268339 950 $aBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$d08CONS e-book 7483 $e08eMF7483 20231211 996 $aFunction Theory in the Unit Ball of ?n$93643873 997 $aUNICAMPANIA LEADER 01243nam0 22003133i 450 001 VAN00161817 005 20240806101011.991 010 $a978-88-217-4078-7 100 $a20210614d2012 |0itac50 ba 101 $aita 102 $aIT 105 $a|||| ||||| 200 1 $aNuova centrale dei rischi$ecome leggerla, rielaborarla e interpretarla$fFrancesco Lenoci, Stefano Peola 205 $a2. ed 210 $aMilano$cIPSOA$d2012 215 $aXX, 453 p.$d24 cm 316 $a1 v.$5IT-IT-CE0105 CONSVI.Eg.262 410 1$1001VAN00104633$12001 $aFinanza aziendale$1210 $aMilanofiori, Assago$cIPSOA. 606 $aBanche$xCentrale dei rischi$xItalia$3VANC036321$2SG 620 $dMilano$3VANL000284 700 1$aLenoci$bFrancesco$3VANV068035$0372027 701 1$aPeola$bStefano$3VANV073234$0498750 712 $aIPSOA $3VANV107907$4650 801 $aIT$bSOL$c20240906$gRICA 899 $aBIBLIOTECA DEL DIPARTIMENTO DI GIURISPRUDENZA$1IT-CE0105$2VAN00 912 $aVAN00161817 950 $aBIBLIOTECA DEL DIPARTIMENTO DI GIURISPRUDENZA$d00CONS VI.Eg.262 $e00UBG6512 20210614 1 v.$sBuono 996 $aNuova centrale dei rischi$91136961 997 $aUNICAMPANIA