LEADER 02917nam0 2200613 i 450 001 VAN00124579 005 20240806100816.742 017 70$2N$a9783319768953 100 $a20191021d2018 |0itac50 ba 101 $aeng 102 $aCH 105 $a|||| ||||| 200 1 $aAsymptotics of Elliptic and Parabolic PDEs$eand their Applications in Statistical Physics, Computational Neuroscience, and Biophysics$fDavid Holcman, Zeev Schuss 210 $aCham$cSpringer$d2018 215 $axxiii, 444 p.$cill.$d24 cm 410 1$1001VAN00023717$12001 $aApplied mathematical sciences$1210 $aBerlin [etc]$cSpringer$d1971-$v199 500 1$3VAN00236140$aAsymptotics of Elliptic and Parabolic PDEs$91564662 606 $a30E25$xBoundary value problems in the complex plane [MSC 2020]$3VANC035190$2MF 606 $a34E20$xSingular perturbations, turning point theory, WKB methods for ordinary differential equation [MSC 2020]$3VANC024626$2MF 606 $a35P20$xAsymptotic distribution of eigenvalues in context of PDEs [MSC 2020]$3VANC022648$2MF 606 $a35Qxx$xPartial differential equations of mathematical physics and other areas of application [MSC 2020]$3VANC022881$2MF 606 $a81Q20$xSemiclassical techniques including WKB and Maslov methods applied to problems in quantum theory [MSC 2020]$3VANC021228$2MF 610 $aApplied conformal transformation$9KW:K 610 $aAsymptotic formula$9KW:K 610 $aBoundary Value Problems$9KW:K 610 $aEigenvalues$9KW:K 610 $aEikonal equation$9KW:K 610 $aExtreme statistics$9KW:K 610 $aFirst passage time$9KW:K 610 $aGreens Functions$9KW:K 610 $aHelmholtz Equation$9KW:K 610 $aIntegral equations$9KW:K 610 $aLong-time asymptotics$9KW:K 610 $aMatched asymptotics$9KW:K 610 $aNarrow escape$9KW:K 610 $aNeumann?s function$9KW:K 610 $aNon-self adjoint operators$9KW:K 610 $aPartial Differential Equations$9KW:K 610 $aPoisson-Nernst-Planck$9KW:K 610 $aRay method$9KW:K 610 $aShort-time asymptotics$9KW:K 610 $aWKB$9KW:K 620 $aCH$dCham$3VANL001889 700 1$aHolcman$bDavid$3VANV095488$0768213 701 1$aSchuss$bZeev$3VANV096004$0460932 712 $aSpringer $3VANV108073$4650 801 $aIT$bSOL$c20250411$gRICA 856 4 $uhttp://doi.org/10.1007/978-3-319-76895-3$zE-book ? Accesso al full-text attraverso riconoscimento IP di Ateneo, proxy e/o Shibboleth 899 $aBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$1IT-CE0120$2VAN08 912 $fN 912 $aVAN00124579 950 $aBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$d08DLOAD e-book 1044 $e08eMF1044 20191021 996 $aAsymptotics of Elliptic and Parabolic PDEs$91564662 997 $aUNICAMPANIA LEADER 01236nam0 22003013i 450 001 VAN00130170 005 20240806100830.925 010 $a978-04-15-70348-2 100 $a20200720d2016 |0itac50 ba 101 $aeng 102 $aGB 105 $a|||| ||||| 200 1 $aExplaining inequality$fMaurizio Franzini, Mario Pianta 210 $aLondon$aNew York$cRoutledge$d2016 215 $aVIII, 117 p.$d23 cm. - 620 $aUS$dNew York$3VANL000011 620 $aGB$dLondon$3VANL000015 700 1$aFranzini$bMaurizio$3VANV003667$089280 701 1$aPianta$bMario$3VANV067280$0118296 712 $aRoutledge $3VANV108268$4650 790 1$aFranzini, M.$zFranzini, Maurizio$3VANV027005 801 $aIT$bSOL$c20260130$gRICA 856 4 $uhttps://books.google.it/books?id=Rr80CwAAQBAJ&printsec=frontcover&hl=it$zhttps://books.google.it/books?id=Rr80CwAAQBAJ&printsec=frontcover&hl=it 899 $aBIBLIOTECA DEL DIPARTIMENTO DI GIURISPRUDENZA$1IT-CE0105$2VAN00 912 $aVAN00130170 950 $aBIBLIOTECA DEL DIPARTIMENTO DI GIURISPRUDENZA$d00CONS VII.Ea.301 $e00UBG5148 20200720 996 $aExplaining inequality$91754069 997 $aUNICAMPANIA