LEADER 02278nam0 2200517 i 450 001 VAN00126874 005 20240806100822.708 017 70$2N$a9783030315979 100 $a20200218d2019 |0itac50 ba 101 $aeng 102 $aCH 105 $a|||| ||||| 200 1 $aFoundations of Hyperbolic Manifolds$fJohn G. Ratcliffe 205 $a3. ed 210 $aCham$cSpringer$d2019 215 $axii, 800 p.$cill.$d24 cm 410 1$1001VAN00023579$12001 $aGraduate texts in mathematics$1210 $aNew York [etc.]$cSpringer$d1950-$v149 500 1$3VAN00236768$aFoundations of Hyperbolic Manifolds$91732472 606 $a20H10$xFuchsian groups and their generalizations (group-theoretic aspects) [MSC 2020]$3VANC023757$2MF 606 $a30F40$xKleinian groups (aspects of compact Riemann surfaces and uniformization) [MSC 2020]$3VANC023816$2MF 606 $a57M50$xGeneral geometric structures on low-dimensional manifolds [MSC 2020]$3VANC023815$2MF 610 $aArithmetic hyperbolic groups$9KW:K 610 $aDiscrete groups$9KW:K 610 $aEuclidean Geometry$9KW:K 610 $aGeometric manifolds$9KW:K 610 $aGeometric orbifolds$9KW:K 610 $aGeometric surfaces$9KW:K 610 $aGeometrically finite n-manifolds$9KW:K 610 $aHyperbolic 3-manifolds$9KW:K 610 $aHyperbolic manifolds$9KW:K 610 $aHyperbolic n-manifolds$9KW:K 610 $aInversive geometry$9KW:K 610 $aIsotopies of hyperbolic space$9KW:K 610 $aLow dimensional topology$9KW:K 610 $aLow-dimensional geometry$9KW:K 610 $aSpherical Geometry$9KW:K 620 $aCH$dCham$3VANL001889 712 $aSpringer $3VANV108073$4650 801 $aIT$bSOL$c20241115$gRICA 856 4 $uhttp://doi.org/10.1007/978-3-030-31597-9$zE-book ? Accesso al full-text attraverso riconoscimento IP di Ateneo, proxy e/o Shibboleth 899 $aBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$1IT-CE0120$2VAN08 912 $fN 912 $aVAN00126874 950 $aBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$d08DLOAD e-book 1580 $e08eMF1580 20200218 996 $aFoundations of Hyperbolic Manifolds$91732472 997 $aUNICAMPANIA