LEADER 02532nam0 2200553 i 450 001 VAN00124969 005 20240806100817.753 017 70$2N$a9783319947556 100 $a20191029d2018 |0itac50 ba 101 $aeng 102 $aCH 105 $a|||| ||||| 200 1 $aReflection Positivity$eA Representation Theoretic Perspective$fKarl-Hermann Neeb, Gestur Ólafsson 210 $aKarl-Hermann Neeb, Gestur ÓlafssonCham$cSpringer$d2018 215 $aviii, 139 p.$cill.$d24 cm 410 1$1001VAN00104274$12001 $aSpringerBriefs in Mathematical Physics$1210 $aBerlin [etc.]$cSpringer$d2014-$v32 500 1$3VAN00236473$aReflection Positivity$91563742 606 $a22-XX$xTopological groups, Lie groups [MSC 2020]$3VANC020459$2MF 606 $a22E47$xRepresentations of Lie and real algebraic groups: algebraic methods (Verma modules, etc.) [MSC 2020]$3VANC022422$2MF 606 $a42-XX$xHarmonic analysis on Euclidean spaces [MSC 2020]$3VANC019851$2MF 606 $a43-XX$xAbstract harmonic analysis [MSC 2020]$3VANC021258$2MF 606 $a81-XX$xQuantum theory [MSC 2020]$3VANC019967$2MF 610 $aCartan dual group$9KW:K 610 $aConstructive Quantum Field Theory$9KW:K 610 $aEuclidean group$9KW:K 610 $aHardy-Littlewood-Sobolev inequality$9KW:K 610 $aKubo-Martin-Schwinger condition$9KW:K 610 $aLattice Gauge Theory$9KW:K 610 $aLax-Phillips scattering theory$9KW:K 610 $aLorentz group$9KW:K 610 $aPoincare group$9KW:K 610 $aReflection positive Hilbert space$9KW:K 610 $aRepresentation Theory$9KW:K 610 $aRiemannian geometry$9KW:K 610 $aStochastic processes$9KW:K 610 $aSymmetric Lie groups$9KW:K 610 $aWick rotation$9KW:K 620 $aCH$dCham$3VANL001889 700 1$aNeeb$bKarl-Hermann$3VANV044807$060109 701 1$aÓlafsson$bGestur$3VANV096399$0314089 712 $aSpringer $3VANV108073$4650 801 $aIT$bSOL$c20240906$gRICA 856 4 $uhttp://doi.org/10.1007/978-3-319-94755-6$zE-book ? Accesso al full-text attraverso riconoscimento IP di Ateneo, proxy e/o Shibboleth 899 $aBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$1IT-CE0120$2VAN08 912 $fN 912 $aVAN00124969 950 $aBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$d08CONS e-book 1349 $e08eMF1349 20191029 996 $aReflection Positivity$91563742 997 $aUNICAMPANIA