LEADER 02231nam0 2200493 i 450 001 VAN00124929 005 20240806100817.631 017 70$2N$a9783319944302 100 $a20191028d2018 |0itac50 ba 101 $aeng 102 $aCH 105 $a|||| ||||| 200 1 $aOrthogonal Latin Squares Based on Groups$fAnthony B. Evans 210 $aCham$cSpringer$d2018 215 $axv, 537 p.$cill.$d24 cm 410 1$1001VAN00102857$12001 $aDevelopments in Mathematics$1210 $aBerlin [etc.]$cSpringer$d1998-$v57 500 1$3VAN00236424$aOrthogonal Latin Squares Based on Groups$91563709 606 $a05-XX$xCombinatorics [MSC 2020]$3VANC019812$2MF 606 $a05Bxx$xDesigns and configurations [MSC 2020]$3VANC023624$2MF 606 $a05E18$xGroup actions on combinatorial structures [MSC 2020]$3VANC023697$2MF 606 $a11Txx$xFinite fields and commutative rings (number-theoretic aspects) [MSC 2020]$3VANC021302$2MF 606 $a12E20$xFinite fields (field-theoretic aspects) [MSC 2020]$3VANC026983$2MF 606 $a20Fxx$xSpecial aspects of infinite or finite groups [MSC 2020]$3VANC023970$2MF 606 $a20Nxx$xOther generalizations of groups [MSC 2020]$3VANC031235$2MF 610 $aCombinatorics$9KW:K 610 $aComplete mapping$9KW:K 610 $aDifference matrix$9KW:K 610 $aFinite Groups$9KW:K 610 $aFinite fields$9KW:K 610 $aLatin square$9KW:K 610 $aMOLS$9KW:K 610 $aOrthogonality$9KW:K 610 $aOrthomorphism$9KW:K 620 $aCH$dCham$3VANL001889 700 1$aEvans$bAnthony B.$3VANV044638$060217 712 $aSpringer $3VANV108073$4650 801 $aIT$bSOL$c20241115$gRICA 856 4 $uhttp://doi.org/10.1007/978-3-319-94430-2$zE-book ? Accesso al full-text attraverso riconoscimento IP di Ateneo, proxy e/o Shibboleth 899 $aBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$1IT-CE0120$2VAN08 912 $fN 912 $aVAN00124929 950 $aBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$d08DLOAD e-book 1302 $e08eMF1302 20191028 996 $aOrthogonal Latin Squares Based on Groups$91563709 997 $aUNICAMPANIA