LEADER 02203nam0 2200529 i 450 001 VAN00124783 005 20240806100817.328 017 70$2N$a9783319917559 100 $a20191025d2018 |0itac50 ba 101 $aeng 102 $aCH 105 $a|||| ||||| 200 1 $aIntroduction to Riemannian Manifolds$fJohn M. Lee 205 $a2. ed 210 $aCham$cSpringer$d2018 215 $axiii, 437 p.$cill.$d24 cm 410 1$1001VAN00023579$12001 $aGraduate texts in mathematics$1210 $aNew York [etc.]$cSpringer$d1950-$v176 500 1$3VAN00236319$aRiemannian Manifolds: An Introduction to Curvature$92554225 606 $a53-XX$xDifferential geometry [MSC 2020]$3VANC019813$2MF 606 $a53B20$xLocal Riemannian geometry [MSC 2020]$3VANC024066$2MF 606 $a53C20$xGlobal Riemannian geometry, including pinching [MSC 2020]$3VANC023825$2MF 610 $aComparison theory$9KW:K 610 $aCurvature$9KW:K 610 $aCurvature and topology$9KW:K 610 $aDifferential geometry textbook$9KW:K 610 $aGauss-Bonnet Theorem$9KW:K 610 $aGeodesics$9KW:K 610 $aGraduate mathematics textbook$9KW:K 610 $aJacobi fields$9KW:K 610 $aLevi-Cevita connection$9KW:K 610 $aManifolds$9KW:K 610 $aRiemannian geometry$9KW:K 610 $aRiemannian geometry course textbook$9KW:K 610 $aRiemannian metrics$9KW:K 610 $aRiemannian submanifolds$9KW:K 610 $aTensor$9KW:K 620 $aCH$dCham$3VANL001889 700 1$aLee$bJohn M.$3VANV042371$061929 712 $aSpringer $3VANV108073$4650 801 $aIT$bSOL$c20241115$gRICA 856 4 $uhttp://doi.org/10.1007/978-3-319-91755-9$zE-book ? Accesso al full-text attraverso riconoscimento IP di Ateneo, proxy e/o Shibboleth 899 $aBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$1IT-CE0120$2VAN08 912 $fN 912 $aVAN00124783 950 $aBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$d08DLOAD e-book 1202 $e08eMF1202 20191025 996 $aRiemannian Manifolds: An Introduction to Curvature$92554225 997 $aUNICAMPANIA