LEADER 02491nam0 2200541 i 450 001 VAN00124567 005 20240806100816.695 017 70$2N$a9783319945774 100 $a20191021d2018 |0itac50 ba 101 $aeng 102 $aCH 105 $a|||| ||||| 200 1 $aˆAn ‰Introduction to Random Currents and Their Applications$fVincenzo Capasso 210 $aCham$cSpringer$d2018 215 $axiii, 143 p.$cill.$d24 cm 410 1$1001VAN00102596$12001 $aSpringerBriefs in mathematics$1210 $aBerlin [etc.]$cSpringer$d2011- 500 1$3VAN00236124$aˆAn ‰Introduction to Random Currents and Their Applications$91564653 606 $a28-XX$xMeasure and integration [MSC 2020]$3VANC019878$2MF 606 $a28A75$xLength, area, volume, other geometric measure theory [MSC 2020]$3VANC021494$2MF 606 $a60-XX$xProbability theory and stochastic processes [MSC 2020]$3VANC020428$2MF 606 $a60Dxx$xGeometric probability and stochastic geometry [MSC 2020]$3VANC020491$2MF 610 $aBoundary$9KW:K 610 $aCrystal dislocations$9KW:K 610 $aElements of measure theory$9KW:K 610 $aFundamentals of Stochastic Processes$9KW:K 610 $aGaussian currents$9KW:K 610 $aGaussian currents in statistical shape analysis$9KW:K 610 $aGeometric measure theory$9KW:K 610 $aLinear functionals$9KW:K 610 $aOperations on currents$9KW:K 610 $aPush-forward of a current$9KW:K 610 $aRandom currents on Hilbert spaces$9KW:K 610 $aStatistical shape analysis$9KW:K 610 $aStochastic Geometry$9KW:K 610 $aTheory of currents$9KW:K 610 $aTumor-driven angiogenesis$9KW:K 610 $aand Lie derivative of a current$9KW:K 620 $aCH$dCham$3VANL001889 700 1$aCapasso$bVincenzo$f1945- $3VANV042969$051830 712 $aSpringer $3VANV108073$4650 801 $aIT$bSOL$c20241115$gRICA 856 4 $uhttp://doi.org/10.1007/978-3-319-94577-4$zE-book ? Accesso al full-text attraverso riconoscimento IP di Ateneo, proxy e/o Shibboleth 899 $aBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$1IT-CE0120$2VAN08 912 $fN 912 $aVAN00124567 950 $aBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$d08DLOAD e-book 1029 $e08eMF1029 20191021 996 $aIntroduction to Random Currents and Their Applications$91564653 997 $aUNICAMPANIA