LEADER 02148nam0 2200469 i 450 001 VAN00124298 005 20240806100816.48 017 70$2N$a9783319568140 100 $a20191014d2017 |0itac50 ba 101 $aeng 102 $aCH 105 $a|||| ||||| 200 1 $aConvergence and Summability of Fourier Transforms and Hardy Spaces$fFerenc Weisz 210 $aCham$cBirkhäuser$d2017 215 $axxii, 435 p.$cill.$d24 cm 410 1$1001VAN00044485$12001 $aApplied and numerical harmonic analysis$1210 $aBoston [etc.]$cBirkhäuser$d1997- 500 1$3VAN00235534$aConvergence and Summability of Fourier Transforms and Hardy Spaces$91563070 606 $a42A38$xFourier and Fourier-Stieltjes transforms and other transforms of Fourier type [MSC 2020]$3VANC024732$2MF 606 $a42B08$xSummability in several variables [MSC 2020]$3VANC033547$2MF 606 $a42B30$x$H^p$-spaces [MSC 2020]$3VANC022660$2MF 610 $aAtomic decomposition$9KW:K 610 $aCircular, triangular and cubic summability$9KW:K 610 $aFejér summability$9KW:K 610 $aFourier analysis$9KW:K 610 $aHardy space$9KW:K 610 $aHardy-Littlewood maximal function$9KW:K 610 $aHarmonic analysis$9KW:K 610 $aLebesgue points$9KW:K 610 $aMulti-dimensional summability$9KW:K 610 $aStrong summability$9KW:K 610 $aTheta-summability$9KW:K 620 $aCH$dCham$3VANL001889 700 1$aWeisz$bFerenc$3VANV095739$060660 712 $aBirkhäuser $3VANV108193$4650 801 $aIT$bSOL$c20240906$gRICA 856 4 $uhttp://doi.org/10.1007/978-3-319-56814-0$zE-book ? Accesso al full-text attraverso riconoscimento IP di Ateneo, proxy e/o Shibboleth 899 $aBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$1IT-CE0120$2VAN08 912 $fN 912 $aVAN00124298 950 $aBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$d08CONS e-book 0606 $e08eMF606 20191014 996 $aConvergence and Summability of Fourier Transforms and Hardy Spaces$91563070 997 $aUNICAMPANIA