LEADER 02519nam0 2200625 i 450 001 VAN00124004 005 20250604122322.993 017 70$2N$a9783319618609 100 $a20191007d2017 |0itac50 ba 101 $aeng 102 $aCH 105 $a|||| ||||| 181 $ai$b e 182 $ab 183 $acr 200 1 $aRiemannian Geometry and Geometric Analysis$fJurgen Jost 205 $a7. ed 210 $aCham$cSpringer$d2017 215 $axiv, 697 p.$cill.$d24 cm 410 1$1001VAN00024506$12001 $aUniversitext$1210 $aBerlin [etc]$cSpringer$d1930- 500 1$3VAN00235931$aRiemannian Geometry and Geometric Analysis$982994 606 $a49-XX$xCalculus of variations and optimal control; optimization [MSC 2020]$3VANC019757$2MF 606 $a53B21$xMethods of local Riemannian geometry [MSC 2020]$3VANC029580$2MF 606 $a57R15$xSpecialized structures on manifolds (spin manifolds, framed manifolds, etc.) [MSC 2020]$3VANC020914$2MF 606 $a58E20$xHarmonic maps, etc. [MSC 2020]$3VANC019783$2MF 610 $aCurvature$9KW:K 610 $aDirac operators$9KW:K 610 $aFloer homology$9KW:K 610 $aGeodesics$9KW:K 610 $aGeometry of submanifolds$9KW:K 610 $aHarmonic Functions$9KW:K 610 $aHarmonic maps$9KW:K 610 $aJacobi fields$9KW:K 610 $aKähler manifolds$9KW:K 610 $aLaplace operator$9KW:K 610 $aLie groups$9KW:K 610 $aMorse theory$9KW:K 610 $aQuantum Field Theory$9KW:K 610 $aRiemannian manifolds$9KW:K 610 $aSymmetric spaces$9KW:K 610 $aSymplectic geometry$9KW:K 610 $aTheoretical physics variational principles$9KW:K 610 $aVector bundles$9KW:K 620 $aCH$dCham$3VANL001889 700 1$aJost$bJürgen$3VANV044460$054734 712 $aSpringer $3VANV108073$4650 790 1$aJost, Jurgen$zJost, Jürgen$3VANV065202 801 $aIT$bSOL$c20250919$gRICA 856 4 $uhttp://doi.org/10.1007/978-3-319-61860-9$zE-book ? Accesso al full-text attraverso riconoscimento IP di Ateneo, proxy e/o Shibboleth 899 $aBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$1IT-CE0120$2VAN08 912 $fN 912 $aVAN00124004 950 $aBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$d08DLOAD e-book 0880 $e08eMF880 20191007 996 $aRiemannian geometry and geometric analysis$982994 997 $aUNICAMPANIA