LEADER 02438nam0 2200493 i 450 001 VAN00114782 005 20240806100752.490 017 70$2N$a978-3-319-28203-9 100 $a20180212d2016 |0itac50 ba 101 $aeng 102 $aCH 105 $a|||| ||||| 200 1 $aFrom arithmetic to zeta-functions$enumber theory in memory of Wolfgang Schwarz$fJurgen Sander, Jörn Steuding, Rasa Steuding editors 210 $a[Cham]$cSpringer$d2016 215 $aXXXVII, 538 p.$cill.$d24 cm 500 1$3VAN00242374$aFrom arithmetic to zeta-functions$91523350 606 $a01Axx$xHistory of mathematics and mathematicians [MSC 2020]$3VANC019751$2MF 606 $a11Axx$xElementary number theory [MSC 2020]$3VANC019694$2MF 606 $a11Bxx$xSequences and sets [MSC 2020]$3VANC020834$2MF 606 $a11Dxx$xDiophantine equations [MSC 2020]$3VANC019788$2MF 606 $a11Jxx$xDiophantine approximation, transcendental number theory [MSC 2020]$3VANC023205$2MF 606 $a11Kxx$xProbabilistic theory: distribution modulo 1; metric theory of algorithms [MSC 2020]$3VANC021431$2MF 606 $a11Lxx$xExponential sums and character sums [MSC 2020]$3VANC021897$2MF 606 $a11Mxx$xZeta and L-functions: analitic theory [MSC 2020]$3VANC021784$2MF 606 $a11Nxx$xMultiplicative number theory [MSC 2020]$3VANC020461$2MF 606 $a11Pxx$xAdditive number theory; partitions [MSC 2020]$3VANC021751$2MF 610 $aArithmetical functions$9KW:K 610 $aDiophantine approximation and diophantine equations$9KW:K 610 $aRepresentation problems from additive number theory$9KW:K 610 $aSequences and sets$9KW:K 610 $aZeta functions$9KW:K 620 $aCH$dCham$3VANL001889 702 1$aSander$bJurgen$3VANV088795 702 1$aSteuding$bJörn$3VANV048828 702 1$aSteuding$bRasa$3VANV088796 712 $aSpringer $3VANV108073$4650 801 $aIT$bSOL$c20240906$gRICA 856 4 $uhttp://dx.doi.org/10.1007/978-3-319-28203-9$zE-book ? Accesso al full-text attraverso riconoscimento IP di Ateneo, proxy e/o Shibboleth 899 $aBIBLIOTECA CENTRO DI SERVIZIO SBA$2VAN15 912 $fN 912 $aVAN00114782 950 $aBIBLIOTECA CENTRO DI SERVIZIO SBA$d15CONS SBA EBOOK 2263 $e15EB 2263 20180212 996 $aFrom arithmetic to zeta-functions$91523350 997 $aUNICAMPANIA