LEADER 02051nam0 2200469 i 450 001 VAN00114401 005 20240806100751.544 017 70$2N$a978-3-319-25613-9 100 $a20180202d2016 |0itac50 ba 101 $aita 102 $aIT 105 $a|||| ||||| 200 1 $aˆAn ‰introduction to frames and Riesz bases$fOle Christensen 205 $a2. ed 210 $a[Cham]$cBirkhäuser$cSpringer$d2016 215 $aXXV, 704 p.$cill.$d24 cm 410 1$1001VAN00044485$12001 $aApplied and numerical harmonic analysis$1210 $aBoston [etc.]$cBirkhäuser$d1997- 500 1$3VAN00241916$aˆAn ‰introduction to frames and Riesz bases$9950663 606 $a41-XX$xApproximations and expansions [MSC 2020]$3VANC022010$2MF 606 $a42-XX$xHarmonic analysis on Euclidean spaces [MSC 2020]$3VANC019851$2MF 606 $a42C15$xGeneral harmonic expansions, frames [MSC 2020]$3VANC022084$2MF 606 $a42C40$xNontrigonometric harmonic analysis involving wavelets and other special systems [MSC 2020]$3VANC020271$2MF 610 $aFrame Theory$9KW:K 610 $aGabor frames$9KW:K 610 $aGeneralized Shift-invariant Systems$9KW:K 610 $aHilbert spaces$9KW:K 610 $aLCA Groups$9KW:K 610 $aRiesz Bases$9KW:K 610 $aVector spaces$9KW:K 610 $aWavelets$9KW:K 620 $aCH$dCham$3VANL001889 700 1$aChristensen$bOle$3VANV088496$0563963 712 $aBirkhäuser $3VANV108193$4650 712 $aSpringer $3VANV108073$4650 801 $aIT$bSOL$c20240906$gRICA 856 4 $uhttp://dx.doi.org/10.1007/978-3-319-25613-9$zE-book ? Accesso al full-text attraverso riconoscimento IP di Ateneo, proxy e/o Shibboleth 899 $aBIBLIOTECA CENTRO DI SERVIZIO SBA$2VAN15 912 $fN 912 $aVAN00114401 950 $aBIBLIOTECA CENTRO DI SERVIZIO SBA$d15CONS SBA EBOOK 2099 $e15EB 2099 20180202 996 $aIntroduction to frames and Riesz Bases$9950663 997 $aUNICAMPANIA