LEADER 02403nam0 2200457 i 450 001 VAN00113685 005 20240806100749.536 017 70$2N$a9783319209975 100 $a20180117d2015 |0itac50 ba 101 $aeng 102 $aCH 105 $a|||| ||||| 200 1 $aEvolution equations of von Karman type$fPascal Cherrier, Albert Milani 210 $a[Cham]$cSpringer$cUnione matematica italiana$d2015 215 $aXVI, 140 p.$d24 cm 410 1$1001VAN00062328$12001 $aLecture notes of the Unione Matematica Italiana$1210 $aBerlin [etc.]$cSpringer$v17 500 1$3VAN00234996$aEvolution equations of von Karman type$91522726 606 $a35F21$xHamilton-Jacobi equations [MSC 2020]$3VANC029004$2MF 606 $a37J06$xGeneral theory of finite-dimensional Hamiltonian and Lagrangian systems, Hamiltonian and Lagrangian structures, symmetries, invariants [MSC 2020]$3VANC033742$2MF 606 $a53D05$xSymplectic manifolds, general [MSC 2020]$3VANC023410$2MF 606 $a53D12$xLagrangian submanifolds; Maslov index [MSC 2020]$3VANC033741$2MF 606 $a53Zxx$xApplications of differential geometry to sciences and engineering [MSC 2020]$3VANC023358$2MF 606 $a58E05$xAbstract critical point theory (Morse theory, Lyusternik-Shnirel'man theory, etc.) in infinite-dimensional spaces [MSC 2020]$3VANC023131$2MF 610 $aLocal and global solutions$9KW:K 610 $aNonlinear evolution equations$9KW:K 610 $aPartial differential equations$9KW:K 610 $aVon Karman equations$9KW:K 610 $aWeak and strong solutions$9KW:K 620 $aCH$dCham$3VANL001889 700 1$aCherrier$bPascal$3VANV087782$0477813 702 1$aMilani$bAlbert$3VANV087783 712 $aSpringer $3VANV108073$4650 712 $aUnione matematica italiana$3VANV109169$4650 801 $aIT$bSOL$c20241115$gRICA 856 4 $uhttp://dx.doi.org/10.1007/978-3-319-20997-5$zE-book ? Accesso al full-text attraverso riconoscimento IP di Ateneo, proxy e/o Shibboleth 899 $aBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$1IT-CE0120$2VAN08 912 $fN 912 $aVAN00113685 950 $aBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$d08DLOAD e-book 0188 $e08eMF188 20180117 996 $aEvolution equations of von Karman type$91522726 997 $aUNICAMPANIA