LEADER 02983nam0 2200505 i 450 001 VAN00113480 005 20240806100748.959 017 70$2N$a9783319170701 100 $a20180110d2015 |0itac50 ba 101 $aeng 102 $aCH 105 $a|||| ||||| 200 1 $aSpectral theory of operator pencils, Hermite-Biehler functions, and their applications$fManfred Möller, Vyacheslav Pivovarchik 210 $a[Cham]$cBirkhäuser$cSpringer$d2015 215 $aXVII, 412 p.$cill.$d24 cm 410 1$1001VAN00036604$12001 $aOperator theory: advances and applications$1210 $aBasel [etc.]$cBirkhäuser$d1979-$v246 500 1$3VAN00235258$aSpectral theory of operator pencils, Hermite-Biehler functions, and their applications$91522620 606 $a34A55$xInverse problems involving ordinary differential equations [MSC 2020]$3VANC023360$2MF 606 $a34B07$xLinear boundary value problems for ordinary differential equations with nonlinear dependence on the spectral parameter [MSC 2020]$3VANC033640$2MF 606 $a34B45$xBoundary value problems on graphs and networks for ordinary differential equations [MSC 2020]$3VANC028368$2MF 606 $a34L20$xAsymptotic distribution of eigenvalues, asymptotic theory of eigenfunctions for ordinary differential operators [MSC 2020]$3VANC024687$2MF 606 $a47A56$xFunctions whose values are linear operators (operator- and matrix- valued functions, etc., including analytic and meromorphic ones) [MSC 2020]$3VANC021621$2MF 606 $a47B07$xLinear operators defined by compactness properties [MSC 2020]$3VANC022606$2MF 606 $a47Exx$xOrdinary differential operators [MSC 2020]$3VANC021623$2MF 606 $a74K05$xStrings [MSC 2020]$3VANC033641$2MF 606 $a74K10$xRods (beams, columns, shafts, arches, rings, etc.) [MSC 2020]$3VANC023318$2MF 610 $aDamped vibrations$9KW:K 610 $aGeneralized Hermite-Biehler functions$9KW:K 610 $aInverse Problems$9KW:K 610 $aOperator pencils$9KW:K 610 $aOrdinary Differential Equations$9KW:K 610 $aSpectral asymptotics$9KW:K 620 $aCH$dCham$3VANL001889 700 1$aMöller$bManfred$3VANV087589$0149791 701 1$aPivovarchik$bVyacheslav$3VANV087590$0755588 712 $aBirkhäuser $3VANV108193$4650 712 $aSpringer $3VANV108073$4650 801 $aIT$bSOL$c20250411$gRICA 856 4 $uhttp://dx.doi.org/10.1007/978-3-319-17070-1$zE-book ? Accesso al full-text attraverso riconoscimento IP di Ateneo, proxy e/o Shibboleth 899 $aBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$1IT-CE0120$2VAN08 912 $fN 912 $aVAN00113480 950 $aBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$d08DLOAD e-book 0437 $e08eMF437 20180110 996 $aSpectral theory of operator pencils, Hermite-Biehler functions, and their applications$91522620 997 $aUNICAMPANIA LEADER 01035nam0 22002771i 450 001 VAN00025960 005 20240806100330.861 010 $a88-14-10565-0 100 $a20041018d2003 |0itac50 ba 101 $aita 102 $aIT 105 $a|||| ||||| 200 1 $aˆL'‰economia degli application service provider (ASP)$fDonatella Busso 210 $aMilano$cGiuffrè$d2003 215 $aXIV, 350 p.$d26 cm. 606 $aAziende di software$xGestione$3VANC011758$2FI 620 $dMilano$3VANL000284 676 $a005.10688$v21 700 1$aBusso$bDonatella$3VANV021671$0437683 712 $aGiuffrè $3VANV109181$4650 801 $aIT$bSOL$c20251114$gRICA 899 $aBIBLIOTECA DEL DIPARTIMENTO DI GIURISPRUDENZA$1IT-CE0105$2VAN00 912 $aVAN00025960 950 $aBIBLIOTECA DEL DIPARTIMENTO DI GIURISPRUDENZA$d00CONS XX.Cg.77 $e00 24819 20041018 996 $aEconomia degli application service provider (asp$9279900 997 $aUNICAMPANIA