LEADER 00861nam0-22002771i-450- 001 990004886600403321 005 19990530 035 $a000488660 035 $aFED01000488660 035 $a(Aleph)000488660FED01 035 $a000488660 100 $a19990530g19689999km-y0itay50------ba 101 0 $aita 105 $af-------00--- 200 1 $a<>Dramaturgie Brechts . Theater als Mittel der Veränderung$fKSthe Rnlicke-Weiler 205 $a2. Aufl. 210 $aBerlin$cHenschelverlag Kunst und Gesellschaft$d1968. 215 $a286 p., [8] c. di tav.$d25 cm 700 1$aRulicke-Weiler,$bKathe$0195759 801 0$aIT$bUNINA$gRICA$2UNIMARC 901 $aBK 912 $a990004886600403321 952 $aTK 311$bFil. Mod. 14249$fFLFBC 959 $aFLFBC 996 $aDramaturgie Brechts . Theater als Mittel der Veränderung$9520915 997 $aUNINA LEADER 02895nam0 2200553 i 450 001 VAN00110692 005 20240806100742.860 017 70$2N$a9783319542089 100 $a20170914d2017 |0itac50 ba 101 $aeng 102 $aCH 105 $a|||| ||||| 200 1 $aDynamical and geometric aspects of Hamilton-Jacobi and linearized Monge-Ampère equations$eVIASM 2016$f[edited by] Nam Q. Le, Hiroyoshi Mitake, Hung V. Tran 210 $a[Cham]$cSpringer$d2017 215 $aVII, 228 p.$cill.$d24 cm 461 1$1001VAN00102250$12001 $aLecture notes in mathematics$1210 $aBerlin [etc.]$cSpringer$v2183 500 1$3VAN00234300$aDynamical and geometric aspects of Hamilton-Jacobi and linearized Monge-Ampère equations$91466425 606 $a35B10$xPeriodic solutions to PDEs [MSC 2020]$3VANC022734$2MF 606 $a35B27$xHomogenization in context of PDEs ; PDEs in media with periodic structure [MSC 2020]$3VANC022879$2MF 606 $a35B40$xAsymptotic behavior of solutions to PDEs [MSC 2020]$3VANC025025$2MF 606 $a35B50$xMaximum principles in context of PDEs [MSC 2020]$3VANC022802$2MF 606 $a35B51$xComparison principles in context of PDEs [MSC 2020]$3VANC033164$2MF 606 $a35B65$xSmoothness and regularity of solutions to PDEs [MSC 2020]$3VANC022822$2MF 606 $a35D40$xViscosity solutions to PDEs [MSC 2020]$3VANC031228$2MF 606 $a35J40$xBoundary value problems for higher-order elliptic equations [MSC 2020]$3VANC022762$2MF 610 $aAffine Bernstein problem$9KW:K 610 $aAffine mean curvature equation$9KW:K 610 $aCa?arelli-Gutierrez Harnack inequality$9KW:K 610 $aHamilton-Jacobi Equation$9KW:K 610 $aIntroduction to the theory of viscosity solutions$9KW:K 610 $aLarge time behavior$9KW:K 610 $aLinearized Monge-Ampere equations$9KW:K 610 $aMonge-Ampère equation$9KW:K 610 $aPartial differential equations$9KW:K 610 $aSecond boundary value problem$9KW:K 610 $aSelection problem$9KW:K 620 $aCH$dCham$3VANL001889 702 1$aLe$bNam Q.$3VANV085468 702 1$aMitake$bHiroyoshi$3VANV085470 702 1$aTran$bHung V.$3VANV085471 712 $aSpringer $3VANV108073$4650 801 $aIT$bSOL$c20240906$gRICA 856 4 $uhttp://dx.doi.org/10.1007/978-3-319-54208-9$zE-book ? Accesso al full-text attraverso riconoscimento IP di Ateneo, proxy e/o Shibboleth 899 $aBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$1IT-CE0120$2VAN08 912 $fN 912 $aVAN00110692 950 $aBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$d08CONS e-book $e08LNM2183 20170914 996 $aDynamical and geometric aspects of Hamilton-Jacobi and linearized Monge-Ampère equations$91466425 997 $aUNICAMPANIA