LEADER 02052nam0 2200517 i 450 001 VAN00104381 005 20240806100725.948 017 70$2N$a978-981-287-257-9 100 $a20151222d2014 |0itac50 ba 101 $aeng 102 $aSG 105 $a|||| ||||| 200 1 $aNon-metrisable manifolds$fDavid Gauld 210 $aSingapore [etc.]$cSpringer$d2014 215 $aXVI, 203 p.$cill.$d24 cm 500 1$3VAN00241501$aNon-metrisable manifolds$91410052 606 $a37Bxx$xTopological dynamics [MSC 2020]$3VANC029254$2MF 606 $a54E35$xMetric spaces, metrizability [MSC 2020]$3VANC022376$2MF 606 $a57Nxx$xTopological manifolds [MSC 2020]$3VANC023566$2MF 610 $aBagpipe Theorem$9KW:K 610 $aBrown?s Monotone Union Theorem$9KW:K 610 $aContinuum Hypothesis$9KW:K 610 $aDynamics on Manifolds$9KW:K 610 $aExotic Structures on Long Plane$9KW:K 610 $aFoliations of the Plane$9KW:K 610 $aFoliations on Manifolds$9KW:K 610 $aHandlebody$9KW:K 610 $aLong Line$9KW:K 610 $aMetrisability Criteria for Manifolds$9KW:K 610 $aNon-Hausdorff Manifolds$9KW:K 610 $aNon-metrisable Manifolds$9KW:K 610 $aPerfect Normality versus Metrisability$9KW:K 610 $aPrüfer Manifold$9KW:K 610 $aSmooth manifolds$9KW:K 610 $aType I Manifold$9KW:K 620 $aSG$dSingapore$3VANL000061 700 1$aGauld$bDavid$3VANV081413$0721164 712 $aSpringer $3VANV108073$4650 801 $aIT$bSOL$c20240906$gRICA 856 4 $uhttp://dx.doi.org/10.1007/978-981-287-257-9$zE-book ? Accesso al full-text attraverso riconoscimento IP di Ateneo, proxy e/o Shibboleth 899 $aBIBLIOTECA CENTRO DI SERVIZIO SBA$2VAN15 912 $fN 912 $aVAN00104381 950 $aBIBLIOTECA CENTRO DI SERVIZIO SBA$d15CONS SBA EBOOK 4313 $e15EB 4313 20191106 996 $aNon-metrisable manifolds$91410052 997 $aUNICAMPANIA