LEADER 02403nam0 2200457 i 450 001 VAN00102908 005 20240806100721.663 017 70$2N$a978-1-4939-0682-6 100 $a20151014d2014 |0itac50 ba 101 $aeng 102 $aUS 105 $a|||| ||||| 200 1 $ak-Schur functions and affine Schubert calculus$fThomas Lam ... [et al.] 210 $aNew York$cSpringer ; Fields Institute for Research in the Mathematical Sciences$d2014 215 $aVIII, 219 p.$cill.$d24 cm 410 1$1001VAN00053229$12001 $aFields Institute monographs$fThe Fields institute for research in mathematical sciences$1210 $aProvidence$cAmerican mathematical society$1300 $aDal 2013 il luogo e l'editore variano in: New York : Springer$v33 500 1$3VAN00239854$ak-Schur functions and affine Schubert calculus$91410686 606 $a05E05$xSymmetric functions and generalizations [MSC 2020]$3VANC022086$2MF 606 $a05E10$xCombinatorial aspects of representation theory [MSC 2020]$3VANC025072$2MF 606 $a14N15$xClassical problems, Schubert calculus [MSC 2020]$3VANC028921$2MF 606 $a14N35$xGromov-Witten invariants, quantum cohomology, Gopakumar-Vafa invariants, Donaldson-Thomas invariants (algebro-geometric aspects) [MSC 2020]$3VANC023980$2MF 606 $a14Rxx$xAffine geometry [MSC 2020]$3VANC023994$2MF 610 $aAffine Schubert calculus$9KW:K 610 $aCombinatorics$9KW:K 610 $aEnumerative geometry$9KW:K 610 $aMacdonald polynomial positivity$9KW:K 610 $aRepresentation Theory$9KW:K 610 $aSchubert bases$9KW:K 610 $aStanley symmetric functions$9KW:K 620 $aUS$dNew York$3VANL000011 702 1$aLam$bThomas$3VANV080333 712 $aFields Institute for Research in Mathematical Sciences$3VANV041098$4650 712 $aSpringer $3VANV108073$4650 801 $aIT$bSOL$c20240906$gRICA 856 4 $uhttp://dx.doi.org/10.1007/978-1-4939-0682-6$zE-book ? Accesso al full-text attraverso riconoscimento IP di Ateneo, proxy e/o Shibboleth 899 $aBIBLIOTECA CENTRO DI SERVIZIO SBA$2VAN15 912 $fN 912 $aVAN00102908 950 $aBIBLIOTECA CENTRO DI SERVIZIO SBA$d15CONS SBA EBOOK 4641 $e15EB 4641 20191106 996 $aK-Schur functions and affine Schubert calculus$91410686 997 $aUNICAMPANIA