LEADER 01893nam0 2200433 i 450 001 VAN00086888 005 20251009110109.253 017 70$2N$a9783642162862 100 $a20120126d2011 |0itac50 ba 101 $aeng 102 $aDE 105 $a|||| ||||| 181 $ai$b e 182 $ab 183 $acr 200 1 $aˆThe ‰Ricci flow in riemannian geometry$ea complete proof of the differentiable 1/4-pinching sphere theorem$fBen Andrews, Christopher Hopper 210 $aBerlin$cSpringer$d2011 215 $aX, 276 p.$cill.$d24 cm 461 1$1001VAN00102250$12001 $aLecture notes in mathematics$1210 $aBerlin [etc.]$cSpringer$v2011 500 1$3VAN00234235$aˆThe ‰Ricci flow in riemannian geometry$91417611 606 $a35-XX$xPartial differential equations [MSC 2020]$3VANC019763$2MF 606 $a53-XX$xDifferential geometry [MSC 2020]$3VANC019813$2MF 606 $a58-XX$xGlobal analysis, analysis on manifolds [MSC 2020]$3VANC019758$2MF 610 $aPartial Differential Equations$9KW:K 610 $aRicci flow$9KW:K 610 $aRiemannian geometry$9KW:K 610 $aSphere theorem$9KW:K 620 $dBerlin$3VANL000066 700 1$aAndrews$bBen$3VANV071125$0478952 701 1$aHopper$bChristopher$3VANV071126$0510631 712 $aSpringer $3VANV108073$4650 801 $aIT$bSOL$c20251010$gRICA 856 4 $uhttps://doi.org/10.1007/978-3-642-16286-2$zE-book ? Accesso al full-text attraverso riconoscimento IP di Ateneo, proxy e/o Shibboleth 899 $aBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$1IT-CE0120$2VAN08 912 $fN 912 $aVAN00086888 950 $aBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$d08CONS e-book $e08LNM2011 20120126 996 $aRicci flow in riemannian geometry$91417611 997 $aUNICAMPANIA