LEADER 01482nam0 2200313 i 450 001 VAN00064704 005 20250916015106.779 010 $a978-08-218-4328-4 100 $a20080526d2007 |0itac50 ba 101 $aeng 102 $aUS 105 $a|||| ||||| 200 1 $aRicci flow and the Poincaré conjecture$fJohn Morgan, Gang Tian 210 $aProvidence$aCambridge$eMA$cAmerican mathematical society$cClay mathematics institute$d2007 215 $aXLII, 521 p.$d25 cm 410 1$1001VAN00064705$12001 $aClay mathematics monographs$1210 $aProvidence$aCambridge$eMA$cAmerican mathematical society$cClay mathematics institute$v3 606 $a53Exx$xGeometric evolution equations [MSC 2020]$3VANC021666$2MF 606 $a57K30$xGeneral topology of 3-manifolds [MSC 2020]$3VANC025093$2MF 620 $aUS$dProvidence$3VANL000273 700 1$aMorgan$bJohn W.$3VANV040558$057422 701 1$aTian$bGang$3VANV051509$0352356 712 $aAmerican mathematical society$3VANV108732$4650 801 $aIT$bSOL$c20250919$gRICA 856 4 $u/sebina/repository/catalogazione/documenti/ID 64704.pdf$zID 64704.pdf 899 $aBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$1IT-CE0120$2VAN08 912 $aVAN00064704 950 $aBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$d08PREST 53-XX 2900 $e08 8109 I 20080526 996 $aRicci flow and the Poincaré conjecture$9720404 997 $aUNICAMPANIA