LEADER 02443nam0 2200517 i 450 001 VAN00061438 005 20240806100526.129 010 $a978-35-407-3509-0 100 $a20071010d2007 |0itac50 ba 101 $aeng 102 $aDE 105 $a|||| ||||| 200 1 $aLaplacian eigenvectors of graphs$ePerron-Frobenius and Faber-Krahn type theorems$fTurker Biyikoglu, Josef Leydold, Peter F. Stadler 210 $aBerlin$cSpringer$d2007 215 $aVIII, 115 p.$d24 cm 300 $aPubblicazione disponibile anche in formato elettronico 461 1$1001VAN00102250$12001 $aLecture notes in mathematics$1210 $aBerlin [etc.]$cSpringer$v1915 500 1$3VAN00234559$aLaplacian eigenvectors of graphs : Perron-Frobenius and Faber-Krahn type theorems$92983370 606 $a05C05$xTrees [MSC 2020]$3VANC022107$2MF 606 $a05C22$xSigned and weighted graphs [MSC 2020]$3VANC029233$2MF 606 $a05C35$xExtremal problems in graph theory [MSC 2020]$3VANC023617$2MF 606 $a05C50$xGraphs and linear algebra (matrices, eigenvalues, etc.) [MSC 2020]$3VANC022106$2MF 606 $a05C75$xStructural characterization of families of graphs [MSC 2020]$3VANC022108$2MF 606 $a15A18$xEigenvalues, singular values, and eigenvectors [MSC 2020]$3VANC024417$2MF 610 $aAlgorithms$9KW:K 610 $aCombinatorics$9KW:K 610 $aDiscrete Dirichlet problem$9KW:K 610 $aEigenvectors$9KW:K 610 $aGraph Laplacian$9KW:K 610 $aGraphs$9KW:K 610 $aMatrix theory$9KW:K 610 $aNodal domain$9KW:K 610 $aPerron-Frobenius Theorem$9KW:K 610 $aVertices$9KW:K 620 $dBerlin$3VANL000066 700 1$aBiyikoglu$bTurker$3VANV048509$0312250 701 1$aLeydold$bJosef$3VANV048510$0294441 701 1$aStadler$bPeter F.$3VANV048511$0312251 712 $aSpringer $3VANV108073$4650 801 $aIT$bSOL$c20240906$gRICA 856 4 $uhttps://doi.org/10.1007/978-3-540-73510-6$zhttps://doi.org/10.1007/978-3-540-73510-6 899 $aBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$1IT-CE0120$2VAN08 912 $aVAN00061438 950 $aBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$d08PREST 05-XX 0397 $e08 7921 I 20071010 996 $aLaplacian eigenvectors of graphs : Perron-Frobenius and Faber-Krahn type theorems$92983370 997 $aUNICAMPANIA