LEADER 01605nam0 22003491i 450 001 VAN00047296 005 20240806100441.906 010 $a978-05-217-7968-5 100 $a20060706d2000 |0itac50 ba 101 $aeng 102 $aGB 105 $a|||| ||||| 200 1 $aIntegral$ean easy approach after Kurzweil and Henstock$fLee Peng Yee, Rudolf Vyborny 210 $aCambridge$cCambridge University$d2000 215 $aXII, 311 p.$d23 cm 410 1$1001VAN00047299$12001 $aAustralian Mathematical Society lecture series$1210 $aCambridge$cCambridge university$v14 606 $a26-XX$xReal functions [MSC 2020]$3VANC019778$2MF 606 $a26A39$xDenjoy and Perron integrals, other special integrals [MSC 2020]$3VANC022408$2MF 620 $dCambridge$3VANL000024 700 1$aYee$bLee P.$3VANV037603$0726941 701 1$aVyborny$bRudolf$3VANV037604$0424037 712 $aCambridge University $3VANV107986$4650 790 1$aYee, Lee Peng$zYee, Lee P.$3VANV049923 790 1$aYee, L. P.$zYee, Lee P.$3VANV064666 790 1$aYee, L.P.$zYee, Lee P.$3VANV064667 801 $aIT$bSOL$c20250124$gRICA 856 4 $u/sebina/repository/catalogazione/documenti/Lee, Vyborny - Integral. An easy approach after Kurzweil and Henstock.pdf$zContents 899 $aBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$1IT-CE0120$2VAN08 912 $aVAN00047296 950 $aBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$d08PREST 28-XX 4938 $e08 6399 I 20060822 996 $aIntegral$91422041 997 $aUNICAMPANIA