LEADER 01538nam0 2200301 i 450 001 VAN00044119 005 20240806100430.700 010 $a08-218-0463-4 100 $a20060412d1996 |0itac50 ba 101 $aeng 102 $aUS 105 $a|||| ||||| 200 1 $aLebesgue theory in the bidual of C(X)$fSamuel Kaplan 210 $aProvidence$cAmerican Mathematical Society$d1996 215 $aVII, 127 p.$d26 cm 410 1$1001VAN00024370$12001 $aMemoirs of the American Mathematical Society$1210 $aProvidence$cAmerican mathematical society$v579 606 $a28C05$xIntegration theory via linear functionals (Radon measures, Daniell integrals, etc.), representing set functions and measures [MSC 2020]$3VANC022364$2MF 606 $a46Gxx$xMeasures, integration, derivative, holomorphy (all involving infinite-dimensional spaces) [MSC 2020]$3VANC026701$2MF 620 $aUS$dProvidence$3VANL000273 700 1$aKaplan$bSamuel$3VANV035630$0400325 712 $aAmerican mathematical society$3VANV108732$4650 801 $aIT$bSOL$c20240906$gRICA 856 4 $u/sebina/repository/catalogazione/documenti/Kaplan - Lebesgue theory in the bidual of C(X).pdf$zContents 899 $aBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$1IT-CE0120$2VAN08 912 $aVAN00044119 950 $aBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$d08PREST 46-XX 2148 $e08 6960 I 20060412 996 $aLebesgue theory in the bidual of C(X)$91421336 997 $aUNICAMPANIA