LEADER 01719nam0 22003133i 450 001 VAN00251815 005 20240806101429.536 010 $a978-88-921891-0-2 100 $a20221028d2020 |0itac50 ba 101 $aita 102 $aIT 105 $a|||| ||||| 200 1 $aˆLe ‰responsabilità penali del datore di lavoro e COVID-19$eprofili applicativi e D.lgs 231/01$fa cura di Massimo Davi, Matteo Mangia, Alessandra Merenda 210 $aTorino$cGiappichelli$d2020 215 $aVII, 161 p.$d24 cm 606 $aDatori di lavoro$xResponsabilità penale$3VANC035939$2SG 620 $dTorino$3VANL000001 702 1$aDavi$bMassimo$f1974- $3VANV105631 702 1$aMangia$bMatteo$3VANV105632 702 1$aMerenda$bAlessandra$3VANV105630 712 $aGiappichelli $3VANV107921$4650 801 $aIT$bSOL$c20250718$gRICA 856 4 $uhttps://biblioteca.giappichelli.it/biblioteche/biblioteca-giuridica-unicampania/index.html$zVolume disponibile sulla ?Biblioteca Digitale Giappichelli? ll servizio è erogato mediante autenticazione range IP o Proxy, e vincolato al dominio @unicampania.it. E' possibile avere in prestito la copia digitale per 5 giorni, attraverso la generazione di un codice OTP che verrà inviato alla mail, non è consentita la copia, la stampa o la condivisione delle pagine dei libri. 899 $aBIBLIOTECA DEL DIPARTIMENTO DI GIURISPRUDENZA$1IT-CE0105$2VAN00 912 $fN 912 $aVAN00251815 950 $aBIBLIOTECA DEL DIPARTIMENTO DI GIURISPRUDENZA$d00PREST E-BOOK SBA GIUR $e00EBG251815 20221028 996 $aResponsabilità penali del datore di lavoro e COVID-19$91760764 997 $aUNICAMPANIA LEADER 02670nam0 2200493 i 450 001 VAN00029962 005 20260205114103.441 010 $a08-218-0777-3 010 $a978-08-218-0777-4 100 $a20041209d1997 |0itac50 ba 101 $aeng 102 $aUS 105 $a|||| ||||| 181 $ai$b e 182 $an 183 $anc 200 1 $aTopics in classical automorphic forms$fHenryk Iwaniec 210 $aProvidence$cAmerican Mathematical Society$d1997 215 $aXII, 259 p.$d26 cm 410 1$1001VAN00044634$12001 $aGraduate studies in mathematics$1210 $aProvidence$cAmerican mathematical society$v17 606 $a11-XX$xNumber theory [MSC 2020]$3VANC019688$2MF 606 $a11E25$xSums of squares and representations by other particular quadratic forms [MSC 2020]$3VANC019698$2MF 606 $a11E45$xAnalytic theory (Epstein zeta functions; relations with automorphic forms and functions) [MSC 2020]$3VANC021859$2MF 606 $a11F03$xModular and automorphic functions [MSC 2020]$3VANC021723$2MF 606 $a11F11$xHolomorphic modular forms of integral weight [MSC 2020]$3VANC021439$2MF 606 $a11F12$xAutomorphic forms, one variable [MSC 2020]$3VANC021440$2MF 606 $a11F25$xHecke-Petersson operators, differential operators (one variable) [MSC 2020]$3VANC021874$2MF 606 $a11F27$xTheta series; Weil representation; theta correspondences [MSC 2020]$3VANC021421$2MF 606 $a11F30$xFourier coefficients of automorphic forms [MSC 2020]$3VANC021873$2MF 606 $a11F66$xLanglands $L$-functions; one variable Dirichlet series and functional equations [MSC 2020]$3VANC021869$2MF 606 $a11F72$xSpectral theory; trace formulas (e.g., that of Selberg) [MSC 2020]$3VANC025100$2MF 606 $a11Fxx$xDiscontinuous groups and automorphic forms [MSC 2020]$3VANC021451$2MF 606 $a11G05$xElliptic curves over global fields [MSC 2020]$3VANC021455$2MF 606 $a33E05$xElliptic functions and integrals [MSC 2020]$3VANC021871$2MF 620 $aUS$dProvidence$3VANL000273 700 1$aIwaniec$bHenryk$3VANV024797$067493 712 $aAmerican mathematical society$3VANV108732$4650 801 $aIT$bSOL$c20260206$gRICA 856 4 $u/sebina/repository/catalogazione/documenti/ID 29962.pdf$zID 29962.pdf 899 $aBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$1IT-CE0120$2VAN08 912 $aVAN00029962 950 $aBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$d08PREST 11-XX 2073 $e08 4638 II 20041209 996 $aTopics in classical automorphic forms$91431596 997 $aUNICAMPANIA