LEADER 02880nam0 2200529 i 450 001 VAN0123826 005 20230704114642.796 017 70$2N$a9783319530673 100 $a20191002d2017 |0itac50 ba 101 $aeng 102 $aCH 105 $a|||| ||||| 200 1 $aStochastic Optimal Control in Infinite Dimension$eDynamic Programming and HJB Equations$fGiorgio Fabbri, Fausto Gozzi, Andrzej ?wi?ch$gWith a Contribution by Marco Fuhrman and Gianmario Tessitore 210 $aCham$cSpringer$d2017 215 $axxiii, 916 p.$d24 cm 410 1$1001VAN0103826$12001 $aProbability theory and stochastic modelling$1210 $aBerlin [etc.]$cSpringer$d1988-$v82 500 1$3VAN0236012$aStochastic Optimal Control in Infinite Dimension$91562302 606 $a35R15$xPDEs on infinite-dimensional (e.g., function) spaces (= PDEs in infinitely many variables) [MSC 2020]$3VANC019762$2MF 606 $a93E20$xOptimal stochastic control [MSC 2020]$3VANC019946$2MF 606 $a49L20$xDynamic programming in optimal control and differential games [MSC 2020]$3VANC020087$2MF 606 $a49L25$xViscosity solutions to Hamilton-Jacobi equations in optimal control and differential games [MSC 2020]$3VANC021312$2MF 606 $a65Hxx$xNonlinear algebraic or transcendental equations [MSC 2020]$3VANC023055$2MF 606 $a49Lxx$xHamilton-Jacobi theories [MSC 2020]$3VANC023300$2MF 606 $a35Q93$xPDEs in connection with control and optimization [MSC 2020]$3VANC024723$2MF 606 $a37L55$xInfinite-dimensional random dynamical systems; stochastic equations [MSC 2020]$3VANC025530$2MF 610 $aBSDEs approach to HJB equations$9KW:K 610 $aHamilton-Jacobi-Bellman (HJB) equations$9KW:K 610 $aInfinite dimensional systems$9KW:K 610 $aMild solutions of HJB equations$9KW:K 610 $aPartial differential equations$9KW:K 610 $aStochastic optimal control$9KW:K 610 $aViscosity solutions$9KW:K 620 $aCH$dCham$3VANL001889 700 1$aFabbri$bGiorgio$3VANV095282$08826 701 1$aGozzi$bFausto$3VANV033272$0146864 701 1$a?wi?ch$bAndrzej$3VANV095283$0767396 702 1$aFuhrman$bMarco$3VANV095284 702 1$aTessitore$bGianmario$3VANV095285 712 $aSpringer $3VANV108073$4650 801 $aIT$bSOL$c20240614$gRICA 856 4 $uhttp://doi.org/10.1007/978-3-319-53067-3$zE-book ? Accesso al full-text attraverso riconoscimento IP di Ateneo, proxy e/o Shibboleth 899 $aBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$1IT-CE0120$2VAN08 912 $fN 912 $aVAN0123826 950 $aBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$d08CONS e-book 0922 $e08eMF922 20191002 996 $aStochastic Optimal Control in Infinite Dimension$91562302 997 $aUNICAMPANIA LEADER 01278nam0 2200289 i 450 001 VAN00008151 005 20240806100235.363 010 $a88-348-0502-X 020 $aIT$b2001 504 100 $a20020830d2000 |0itac50 ba 101 $aita 102 $aIT 105 $a|||| ||||| 200 1 $aˆIl ‰benchmarking nell'azienda Comune$eprofilo economico-aziendale, approccio metodologico, sistema di rating delle condizioni di successo e spunti di riflessione dalle ricerche$fMassimo Sargiacomo 210 $aTorino$cGiappichelli$d[2000] 215 $a310 p.$d24 cm. 410 1$1001VAN00008702$12001 $aCollana di studi e ricerche sul sistema azienda. Serie pubblica amministrazione$1210 $aTorino$cGiappichelli.$v5 620 $dTorino$3VANL000001 676 $a352.3572160945$v21 700 1$aSargiacomo$bMassimo$3VANV006605$0145666 712 $aGiappichelli $3VANV107921$4650 801 $aIT$bSOL$c20240906$gRICA 899 $aBIBLIOTECA DEL DIPARTIMENTO DI GIURISPRUDENZA$1IT-CE0105$2VAN00 912 $aVAN00008151 950 $aBIBLIOTECA DEL DIPARTIMENTO DI GIURISPRUDENZA$d00CONS XX.Ei.3 $e00 18215 20020906 996 $aBenchmarking nell'azienda comune$9507486 997 $aUNICAMPANIA