LEADER 01076nam0 22002533i 450 001 SUN0133175 005 20210406123804.41 010 $a8-88-916-3819-9$d0.00 100 $a20210406d2020 |0itac50 ba 101 $aita 102 $aIT 105 $a|||| ||||| 200 1 $a*Incarichi di consulenza e di servizi legali$eguida completa alle procedure$econ tutta la modulistica (regolamenti, determine, contratti)$fMaurizio Lucca 210 $aSantarcangelo di Romagna$cMaggioli$d2020 215 $a588 p.$d24 cm. 410 1$1001SUN0009467$12001 $aProgetto ente locale$v302$1210 $aRimini$cMaggioli. 620 $dSantarcangelo di Romagna$3SUNL000123 700 1$aLucca$b, Maurizio$f1962- $3SUNV106927$0791986 712 $aMaggioli$3SUNV000144$4650 801 $aIT$bSOL$c20210412$gRICA 912 $aSUN0133175 950 $aUFFICIO DI BIBLIOTECA DEL DIPARTIMENTO DI GIURISPRUDENZA$d00CONS IV.Eof.167 $e00 133175 20210406 996 $aIncarichi di consulenza e di servizi legali$91770835 997 $aUNICAMPANIA LEADER 06977nam 22005775 450 001 9910789341503321 005 20211115162841.0 010 $a1-4612-0871-8 024 7 $a10.1007/978-1-4612-0871-6 035 $a(CKB)3400000000089299 035 $a(SSID)ssj0000808577 035 $a(PQKBManifestationID)11956400 035 $a(PQKBTitleCode)TC0000808577 035 $a(PQKBWorkID)10778479 035 $a(PQKB)10016522 035 $a(DE-He213)978-1-4612-0871-6 035 $a(MiAaPQ)EBC3073849 035 $a(PPN)23803285X 035 $a(EXLCZ)993400000000089299 100 $a20121227d1994 u| 0 101 0 $aeng 135 $aurnn#008mamaa 181 $ctxt 182 $cc 183 $acr 200 10$aSpace-Filling Curves$b[electronic resource] /$fby Hans Sagan 205 $a1st ed. 1994. 210 1$aNew York, NY :$cSpringer New York :$cImprint: Springer,$d1994. 215 $a1 online resource (XV, 194 p.) 225 1 $aUniversitext,$x0172-5939 300 $aBibliographic Level Mode of Issuance: Monograph 311 $a0-387-94265-3 320 $aIncludes bibliographical references and index. 327 $a1. Introduction -- 1.1. A Brief History of Space-Filling Curves -- 1.2. Notation -- 1.3. Definitions and Netto?s Theorem -- 1.4. Problems -- 2. Hilbert?s Space-Filling Curve -- 2.1. Generation of Hilbert?s Space-Filling Curve -- 2.2. Nowhere Differentiability of the Hilbert Curve -- 2.3. A Complex Representation of the Hilbert Curve -- 2.4. Arithmetization of the Hilbert Curve -- 2.5. An Analytic Proof of the Nowhere Differentiability of the Hilbert Curve -- 2.6. Approximating Polygons for the Hilbert Curve -- 2.7. Moore?s Version of the Hilbert Curve -- 2.8. A Three-Dimensional Hilbert Curve -- 2.9. Problems -- 3. Peano?s Space-Filling Curve -- 3.1. Definition of Peano?s Space-Filling Curve -- 3.2. Nowhere Differentiability of the Peano Curve -- 3.3. Geometric Generation of the Peano Curve -- 3.4. Proof that the Peano Curve and the Geometric Peano Curve are the Same -- 3.5. Cesaro?s Representation of the Peano Curve -- 3.6. Approximating Polygons for the Peano Curve -- 3.7. Wunderlich?s Versions of the Peano Curve -- 3.8. A Three-Dimensional Peano Curve -- 3.9. Problems -- 4. Sierpi?ski?s Space-Filling Curve -- 4.1. Sierpi?ski?s Original Definition -- 4.2. Geometric Generation and Knopp?s Representation of the Sierpi?ski Curve -- 4.3. Representation of the Sierphiski-Knopp Curve in Terms of Quaternaries -- 4.4. Nowhere Differentiability of the Sierpi?ski-Knopp Curve -- 4.5. Approximating Polygons for the Sierpi?ski-Knopp Curve -- 4.6. Pólya?s Generalization of the Sierpi?ski-Knopp Curve -- 4.7. Problems -- 5. Lebesgue?s Space-Filling Curve -- 5.1. The Cantor Set -- 5.2. Properties of the Cantor Set -- 5.3. The Cantor Function and the Devil?s Staircase -- 5.4. Lebesgue?s Definition of a Space-Filling Curve -- 5.5. Approximating Polygons for the Lebesgue Curve -- 5.6. Problems -- 6. Continuous Images of a Line Segment -- 6.1. Preliminary Remarks and a Global Characterization of Continuity -- 6.2. Compact Sets -- 6.3. Connected Sets -- 6.4. Proof of Netto?s Theorem -- 6.5. Locally Connected Sets -- 6.6. A Theorem by Hausdorff -- 6.7. Pathwise Connectedness -- 6.8. The Hahn-Mazurkiewicz Theorem -- 6.9. Generation of Space-Filling Curves by Stochastically Independent Functions -- 6.10. Representation of a Space-Filling Curve by an Analytic Function -- 6.11. Problems -- 7. Schoenberg?s Space-Filling Curve -- 7.1. Definition and Basic Properties -- 7.2. The Nowhere Differentiability of the Schoenberg Curve -- 7.3. Approximating Polygons -- 7.4. A Three-Dimensional Schoenberg Curve -- 7.5. An No-Dimensional Schoenberg Curve -- 7.6. Problems -- 8. Jordan Curves of Positive Lebesgue Measure -- 8.1. Jordan Curves -- 8.2. Osgood?s Jordan Curves of Positive Measure -- 8.3. The Osgood Curves of Sierpi?ski and Knopp -- 8.4. Other Osgood Curves -- 8.5. Problems -- 9. Fractals -- 9.1. Examples -- 9.2. The Space where Fractals are Made -- 9.3. The Invariant Attractor Set -- 9.4. Similarity Dimension -- 9.5. Cantor Curves -- 9.6. The Heighway-Dragon -- 9.7. Problems -- A.1. Computer Programs 169 A.1.1. Computation of the Nodal Points of the Hilbert Curve -- A.1.2. Computation of the Nodal Points of the Peano Curve -- A.1.3. Computation of the Nodal Points of the Sierpi?ski-Knopp Curve -- A.1.4. Plotting Program for the Approximating Polygons of the Schoenberg Curve -- A.2. Theorems from Analysis -- A.2.1. Binary and Other Representations -- A.2.2. Condition for Non-Differentiability -- A.2.3. Completeness of the Euclidean Space -- A.2.4. Uniform Convergence -- A.2.5. Measure of the Intersection of a Decreasing Sequence of Sets -- A.2.6. Cantor?s Intersection Theorem -- A.2.7. Infinite Products -- References. 330 $aThe subject of space-filling curves has fascinated mathematicians for over a century and has intrigued many generations of students of mathematics. Working in this area is like skating on the edge of reason. Unfortunately, no comprehensive treatment has ever been attempted other than the gallant effort by W. Sierpiriski in 1912. At that time, the subject was still in its infancy and the most interesting and perplexing results were still to come. Besides, Sierpiriski's paper was written in Polish and published in a journal that is not readily accessible (Sierpiriski [2]). Most of the early literature on the subject is in French, German, and Polish, providing an additional raison d'etre for a comprehensive treatment in English. While there was, understandably, some intensive research activity on this subject around the turn of the century, contributions have, nevertheless, continued up to the present and there is no end in sight, indicating that the subject is still very much alive. The recent interest in fractals has refocused interest on space­ filling curves, and the study of fractals has thrown some new light on this small but venerable part of mathematics. This monograph is neither a textbook nor an encyclopedic treatment of the subject nor a historical account, but it is a little of each. While it may lend structure to a seminar or pro-seminar, or be useful as a supplement in a course on topology or mathematical analysis, it is primarily intended for self-study by the aficionados of classical analysis. 410 0$aUniversitext,$x0172-5939 606 $aGeometry 606 $aGeometry$3https://scigraph.springernature.com/ontologies/product-market-codes/M21006 615 0$aGeometry. 615 14$aGeometry. 676 $a516.3/62 686 $a54F50$2msc 686 $a28A75$2msc 686 $a54-03$2msc 686 $a01A55$2msc 686 $a01A60$2msc 700 $aSagan$b Hans$4aut$4http://id.loc.gov/vocabulary/relators/aut$050338 906 $aBOOK 912 $a9910789341503321 996 $aSpace-filling curves$9377562 997 $aUNINA LEADER 02919oam 2200745 c 450 001 9910157639803321 005 20260102090118.0 010 $a3-8309-8501-0 024 3 $a9783830985013 035 $a(CKB)3710000001001475 035 $a(Waxmann)9783830985013 035 $a(EXLCZ)993710000001001475 100 $a20260102d2016 uy 0 101 0 $ager 135 $aurnnunnnannuu 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 00$aLied und populäre Kultur / Song and Popular Culture 60/61 (2015/2016) $eJahrbuch des Zentrums für Populäre Kultur und Musik. 60./61. Jahrgang ? 2015/2016. Musik und Protest. Music and Protest /$fKnut Holtsträter, Michael Fischer 205 $a1st ed. 210 $aMünster$cWaxmann$d2016 215 $a1 online resource (504 p.) 225 0 $aLied und populäre Kultur / Song and Popular Culture$v60/61 311 08$a3-8309-3501-3 330 $aDer diesjährige Band widmet sich dem Thema ?Musik und Protest?. In dem Band sind Beiträge über folgende Themen versammelt: Formen des musikalischen Protests im Kabarett der Weimarer Zeit, Rap im frankophonen Afrika, Musik in der Anti-Apartheids-Bewegung, Revolutionslieder aus der Zeit des französischen Saardepartements, Musik in aktuellen Protestbewegungen, das Deutschlandlied im besetzten Rheinland nach dem Ersten Weltkrieg, René Leibowitz Konzept einer ?musique engagée?, chinesischer Pop der 1980er Jahre, die slowenischen Partisanenlieder und deren popkulturelle Aneignung, Rap von Gehörlosen (Dip Hop) und antikolonialer Protest in Kameruner Musiküberlieferungen. 606 $aMusik 606 $aProtest 606 $aProtestbewegung 606 $amusikalischer Protest 606 $aKabarett 606 $aRap 606 $aHip-Hop 606 $aAnti-Apartheids-Bewegung 606 $aRevolutionslied 606 $amusique engagée 606 $aRené Leibowitz 606 $aPartisanenlied 606 $achinesische Popmusik 606 $aDip Hop 606 $aantikolonialer Protest 606 $aMusikalische Volkskulturen/Populäre Musikkulturen 615 4$aMusik 615 4$aProtest 615 4$aProtestbewegung 615 4$amusikalischer Protest 615 4$aKabarett 615 4$aRap 615 4$aHip-Hop 615 4$aAnti-Apartheids-Bewegung 615 4$aRevolutionslied 615 4$amusique engagée 615 4$aRené Leibowitz 615 4$aPartisanenlied 615 4$achinesische Popmusik 615 4$aDip Hop 615 4$aantikolonialer Protest 615 4$aMusikalische Volkskulturen/Populäre Musikkulturen 702 $aHoltsträter$b Knut$4edt 702 $aFischer$b Michael$4edt 801 0$bWaxmann 801 1$bWaxmann 906 $aBOOK 912 $a9910157639803321 996 $aLied und populäre Kultur$91909764 997 $aUNINA