LEADER 02109nam0 2200397 i 450 001 SUN0127409 005 20200312100329.612 010 $d0.00 017 70$2N$a978-3-030-32538-1 100 $a20200312d2019 |0engc50 ba 101 $aeng 102 $aCH 105 $a|||| ||||| 200 1 $a*Chaos$eAn Introduction for Applied Mathematicians$fAndrew Fowler, Mark McGuinness 205 $aCham : Springer, 2019 210 $axiv$d303 p.$cill. ; 24 cm 215 $aPubblicazione in formato elettronico 606 $a34C23$xBifurcation theory for ordinary differential equation [MSC 2020]$2MF$3SUNC019985 606 $a37J40$xPerturbations of finite-dimensional Hamiltonian systems, normal forms, small divisors, KAM theory, Arnol'd diffusion [MSC 2020]$2MF$3SUNC020698 606 $a37D45$xStrange attractors, chaotic dynamics of systems with hyperbolic behavior [MSC 2020]$2MF$3SUNC021187 606 $a37E05$xDynamical systems involving maps of the interval (piecewise continuous, continuous, smooth) [MSC 2020]$2MF$3SUNC021899 606 $a37B10$xSymbolic dynamics [MSC 2020]$2MF$3SUNC024245 606 $a34A34$xNonlinear ordinary differential equations and systems, general theory [MSC 2020]$2MF$3SUNC024338 606 $a34C37$xHomoclinic and heteroclinic solutions to ordinary differential equation [MSC 2020]$2MF$3SUNC029564 606 $a34C28$xComplex behavior and chaotic systems of ordinary differential equation [MSC 2020]$2MF$3SUNC031513 606 $a37C29$xHomoclinic and heteroclinic orbits for dynamical systems [MSC 2020]$2MF$3SUNC033937 620 $aCH$dCham$3SUNL001889 700 1$aFowler$b, Andrew$3SUNV098868$0782124 701 1$aMcGuinness$b, Mark$3SUNV098869$0782125 712 $aSpringer$3SUNV000178$4650 801 $aIT$bSOL$c20210503$gRICA 856 4 $uhttp://doi.org/10.1007/978-3-030-32538-1 912 $aSUN0127409 950 $aUFFICIO DI BIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$d08CONS ebook 1881 $e08eMF1881 20200312 996 $aChaos$91734582 997 $aUNICAMPANIA