LEADER 01504nam0 2200349 i 450 001 SUN0126744 005 20200218084505.830 010 $d0.00 017 70$2N$a978-3-030-24494-1 100 $a20200214d2019 |0engc50 ba 101 $aeng 102 $aCH 105 $a|||| ||||| 200 1 $a*Bayesian Optimization and Data Science$fFrancesco Archetti, Antonio Candelieri 205 $aCham : Springer, 2019 210 $axiii$d126 p.$cill. ; 24 cm 215 $aPubblicazione in formato elettronico 410 1$1001SUN0102834$12001 $a*SpringerBriefs in optimization$1210 $aBerlin$cSpringer$d2012-. 606 $a68Txx$xArtificial intelligence [MSC 2020]$2MF$3SUNC021266 606 $a62-XX$xStatistics [MSC 2020]$2MF$3SUNC022998 606 $a62F15$xBayesian inference [MSC 2020]$2MF$3SUNC024528 606 $a62H30$xClassification and discrimination; cluster analysis (statistical aspects) [MSC 2020]$2MF$3SUNC028931 620 $aCH$dCham$3SUNL001889 700 1$aArchetti$b, Francesco$3SUNV098144$060966 701 1$aCandelieri$b, Antonio$3SUNV098145$0781001 712 $aSpringer$3SUNV000178$4650 801 $aIT$bSOL$c20210503$gRICA 856 4 $uhttp://doi.org/10.1007/978-3-030-24494-1 912 $aSUN0126744 950 $aUFFICIO DI BIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$d08CONS e-book 1520 $e08eMF1520 20200214 996 $aBayesian Optimization and Data Science$91668171 997 $aUNICAMPANIA