LEADER 01742nam0 2200373 i 450 001 SUN0125358 005 20191107102834.66 010 $d0.00 017 70$2N$a978-3-319-11086-8 100 $a20191106d2015 |0engc50 ba 101 $aeng 102 $aCH 105 $a|||| ||||| 200 1 $aThe *Mathematical Theory of Time-Harmonic Maxwell's Equations$eExpansion-, Integral-, and Variational Methods$fAndreas Kirsch, Frank Hettlich 205 $aCham : Springer, 2015 210 $axiii$d337 p. ; 24 cm 215 $aPubblicazione in formato elettronico 410 1$1001SUN0023717$12001 $a*Applied mathematical sciences$v190$1210 $aNew York$cSpringer. 606 $a78-XX$xOptics, electromagnetic theory [MSC 2020]$2MF$3SUNC022356 606 $a33-XX$xSpecial functions [MSC 2020]$2MF$3SUNC022590 606 $a35A15$xVariational methods applied to PDEs [MSC 2020]$2MF$3SUNC022747 606 $a35J05$xLaplace operator, Helmholtz equation (reduced wave equation), Poisson equation [MSC 2020]$2MF$3SUNC025548 606 $a35Q61$xMaxwell equations [MSC 2020]$2MF$3SUNC032320 606 $a33C55$xSpherical harmonics [MSC 2020]$2MF$3SUNC033679 620 $aCH$dCham$3SUNL001889 700 1$aKirsch$b, Andreas$3SUNV044024$028299 701 1$aHettlich$b, Frank$3SUNV096792$0768310 712 $aSpringer$3SUNV000178$4650 801 $aIT$bSOL$c20210503$gRICA 856 4 $uhttp://doi.org/10.1007/978-3-319-11086-8 912 $aSUN0125358 950 $aUFFICIO DI BIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$d08CONS e-book 0474 $e08eMF474 20191107 996 $aMathematical Theory of Time-Harmonic Maxwell's Equations$91564874 997 $aUNICAMPANIA