LEADER 01419nam0 2200337 i 450 001 SUN0124950 005 20191029122650.35 010 $d0.00 017 70$2N$a978-3-319-97190-2 100 $a20191028d2018 |0engc50 ba 101 $aeng 102 $aCH 105 $a|||| ||||| 200 1 $a*Qualitative Theory of Volterra Difference Equations$fYoussef N. Raffoul 205 $aCham : Springer, 2018 210 $axiv$d324 p. ; 24 cm 215 $aPubblicazione in formato elettronico 606 $a45Dxx$xVolterra integral equations [MSC 2020]$2MF$3SUNC022202 606 $a45Jxx$xIntegro-ordinary differential equations [MSC 2020]$2MF$3SUNC022604 606 $a45Bxx$xFredholm integral equations [MSC 2020]$2MF$3SUNC022608 606 $a39Bxx$xFunctional equations and inequalities [MSC 2020]$2MF$3SUNC024720 606 $a39Axx$xDifference equations [MSC 2020]$2MF$3SUNC029241 620 $aCH$dCham$3SUNL001889 700 1$aRaffoul$b, Youssef N.$3SUNV096378$0767887 712 $aSpringer$3SUNV000178$4650 801 $aIT$bSOL$c20210503$gRICA 856 4 $uhttp://doi.org/10.1007/978-3-319-97190-2 912 $aSUN0124950 950 $aUFFICIO DI BIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$d08CONS e-book 1325 $e08eMF1325 20191028 996 $aQualitative Theory of Volterra Difference Equations$91563727 997 $aUNICAMPANIA