LEADER 00936nam0-22003131i-450- 001 990006522600403321 005 20001010 035 $a000652260 035 $aFED01000652260 035 $a(Aleph)000652260FED01 035 $a000652260 100 $a20001010d--------km-y0itay50------ba 101 0 $aita 105 $ay-------001yy 200 1 $aStructures sociales "orientales" et "occidentales" dans l'Espagne musulmane$fPierre Guichard 210 $aParis-La Haye$cMouton$d1977. 215 $a427 p.$d22 cm 225 1 $aCivilisation et Societee$v60 676 $a305 700 1$aGuichard,$bPierre$015630 801 0$aIT$bUNINA$gRICA$2UNIMARC 901 $aBK 912 $a990006522600403321 952 $aCOLLEZ. 132 (60)$b5178$fFSPBC 952 $aIX A 51$b5525$fFSPBC 959 $aFSPBC 996 $aStructures sociales "orientales" et "occidentales" dans l'Espagne musulmane$9620544 997 $aUNINA DB $aGEN01 LEADER 02156nam0 2200409 i 450 001 SUN0123784 005 20191014030752.799 010 $d0.00 017 70$2N$a978-3-319-61934-7 100 $a20191002d2017 |0engc50 ba 101 $aeng 102 $aCH 105 $a|||| ||||| 200 1 $a*Attractors Under Discretisation$fXiaoying Han, Peter Kloeden 205 $aCham : Springer, 2017 210 $axi$d122 p.$cill. ; 24 cm 215 $aPubblicazione in formato elettronico 410 1$1001SUN0102596$12001 $a*SpringerBriefs in mathematics$1210 $aBerlin$cSpringer$d2011-. 606 $a65-XX$xNumerical analysis [MSC 2020]$2MF$3SUNC019772 606 $a65Lxx$xNumerical methods for ordinary differential equations [MSC 2020]$2MF$3SUNC020052 606 $a37D45$xStrange attractors, chaotic dynamics of systems with hyperbolic behavior [MSC 2020]$2MF$3SUNC021187 606 $a65P20$xNumerical chaos [MSC 2020]$2MF$3SUNC021953 606 $a34A30$xLinear ordinary differential equations and systems, general [MSC 2020]$2MF$3SUNC022393 606 $a65L20$xStability and convergence of numerical methods for ordinary differential equations [MSC 2020]$2MF$3SUNC023036 606 $a37C70$xAttractors and repellers of smooth dynamical systems and their topological structure [MSC 2020]$2MF$3SUNC023287 606 $a65P40$xNumerical nonlinear stabilities in dynamical systems [MSC 2020]$2MF$3SUNC023402 606 $a37M25$xComputational methods for ergodic theory (approximation of invariant measures, computation of Lyapunov exponents, entropy) [MSC 2020]$2MF$3SUNC035195 620 $aCH$dCham$3SUNL001889 700 1$aHan$b, Xiaoying$3SUNV088531$0755831 701 1$aKloeden$b, Peter E.$3SUNV052120$021624 712 $aSpringer$3SUNV000178$4650 801 $aIT$bSOL$c20210503$gRICA 856 4 $uhttp://doi.org/10.1007/978-3-319-61934-7 912 $aSUN0123784 950 $aUFFICIO DI BIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$d08CONS e-book 0574 $e08eMF574 20191002 996 $aAttractors Under Discretisation$91562268 997 $aUNICAMPANIA LEADER 01949oam 2200481 450 001 9910715284303321 005 20210112091417.0 035 $a(CKB)5470000002509178 035 $a(OCoLC)1037869209$z(OCoLC)974646482$z(OCoLC)1085931287 035 $a(OCoLC)995470000002509178 035 $a(EXLCZ)995470000002509178 100 $a20180528d1988 ua 0 101 0 $aeng 135 $aurbn||||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aSimulation of ground-water flow in the lower sand unit of the Potomac-Raritan-Magothy aquifer system, Philadelphia, Pennsylvania /$fby Ronald A. Sloto 210 1$aHarrisburg, Pennsylvania :$cU.S. Geological Survey,$d1988. 215 $a1 online resource (vi, 51 pages) $cillustrations, maps +$e6 plates 225 1 $aWater-resources investigations report ;$v86-4055 320 $aIncludes bibliographical references (pages 49-51). 606 $aGroundwater flow$zDelaware River Watershed (N.Y.-Del. and N.J.)$xComputer simulation 606 $aGroundwater flow$zPennsylvania$zSchuylkill River Watershed$xComputer simulation 606 $aGroundwater flow$xComputer simulation$2fast 607 $aMagothy Aquifer 607 $aPennsylvania$zSchuylkill River Watershed$2fast 607 $aUnited States$zDelaware River Watershed$2fast 615 0$aGroundwater flow$xComputer simulation. 615 0$aGroundwater flow$xComputer simulation. 615 7$aGroundwater flow$xComputer simulation. 700 $aSloto$b Ronald A.$01386564 712 02$aGeological Survey (U.S.), 801 0$bOCLCE 801 1$bOCLCE 801 2$bCOP 801 2$bOCLCF 801 2$bOCLCQ 801 2$bGPO 906 $aBOOK 912 $a9910715284303321 996 $aSimulation of ground-water flow in the lower sand unit of the Potomac-Raritan-Magothy aquifer system, Philadelphia, Pennsylvania$93503905 997 $aUNINA