LEADER 01654nam0 2200349 i 450 001 SUN0123557 005 20190925105232.119 010 $d0.00 017 70$2N$a978-3-319-55976-6 100 $a20190924d2017 |0engc50 ba 101 $aeng 102 $aCH 105 $a|||| ||||| 200 1 $a*Newton?s Method$ean Updated Approach of Kantorovich?s Theory$fJosé Antonio Ezquerro Fernández, Miguel Ángel Hernández Verón 205 $aCham : Birkhauser, 2017 210 $axii$d166 p. ; 24 cm 215 $aPubblicazione in formato elettronico 410 1$1001SUN0051364$12001 $a*Frontiers in mathematics$1210 $aBasel$cBirkhäuser$d2004-. 606 $a65H10$xNumerical computation of solutions to systems of equations [MSC 2020]$2MF$3SUNC022161 606 $a45G10$xOther nonlinear integral equations [MSC 2020]$2MF$3SUNC022215 606 $a65J15$xNumerical solutions to equations with nonlinear operators [MSC 2020]$2MF$3SUNC022224 606 $a34B15$xNonlinear boundary value problems for ordinary differential equations [MSC 2020]$2MF$3SUNC029108 620 $aCH$dCham$3SUNL001889 700 1$aEzquerro Fernánez$b, José Antonio$3SUNV095014$0767176 701 1$aHernández-Verón$b, Miguel Ángel$3SUNV095015$0767177 712 $aBirkhäuser$3SUNV000319$4650 801 $aIT$bSOL$c20210503$gRICA 856 4 $uhttp://doi.org/10.1007/978-3-319-55976-6 912 $aSUN0123557 950 $aUFFICIO DI BIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$d08CONS e-book 0814 $e08eMF814 20190924 996 $aNewton?s Method$91561736 997 $aUNICAMPANIA