LEADER 01717nam0 2200361 i 450 001 SUN0114711 005 20180216090249.809 010 $d0.00 017 70$2N$a978-3-319-49847-8 100 $a20180209d2016 |0engc50 ba 101 $aeng 102 $aCH 105 $a|||| ||||| 200 1 $a*Ergodic theory$eindependence and dichotomies$fDavid Kerr, Hanfeng Li 205 $a[Cham] : Springer, 2016 210 $aXXXIV$d431 p.$cill. ; 24 cm 215 $aPubblicazione in formato elettronico 410 1$1001SUN0030486$12001 $a*Springer monographs in mathematics$1210 $aBerlin$cSpringer$d1989-. 606 $a37A20$xAlgebraic ergodic theory, cocycles, orbit equivalence, ergodic equivalence relations [MSC 2020]$2MF$3SUNC022531 606 $a37A25$xErgodicity, mixing, rates of mixing [MSC 2020]$2MF$3SUNC024666 606 $a37A15$xGeneral groups of measure-preserving transformations and dynamical systems [MSC 2020]$2MF$3SUNC029322 606 $a37B05$xDynamical systems involving transformations and group actions with special properties (minimality, distality, proximality, expansivity, etc.) [MSC 2020]$2MF$3SUNC033759 606 $a37B40$xTopological entropy [MSC 2020]$2MF$3SUNC033760 620 $aCH$dCham$3SUNL001889 700 1$aKerr$b, David$3SUNV088752$0526426 701 1$aLi$b, Hanfeng$3SUNV088753$0755905 712 $aSpringer$3SUNV000178$4650 801 $aIT$bSOL$c20201019$gRICA 856 4 $uhttp://dx.doi.org/10.1007/978-3-319-49847-8 912 $aSUN0114711 950 $aBIBLIOTECA CENTRO DI SERVIZIO SBA$d15CONS SBA EBOOK 2231 $e15EB 2231 20180209 996 $aErgodic theory$91523306 997 $aUNICAMPANIA