LEADER 01823nam0 2200385 i 450 001 SUN0114646 005 20180209090644.2 010 $d0.00 017 70$2N$a978-3-319-48814-1 100 $a20180208d2016 |0engc50 ba 101 $aeng 102 $aCH 105 $a|||| ||||| 200 1 $a*Dynamic optimization$edeterministic and stochastic models$fKarl Hinderer, Ulrich Rieder, Michael Stieglitz 205 $a[Cham] : Springer, 2016 210 $aXXII$d530 p.$cill. ; 24 cm 215 $aPubblicazione in formato elettronico 410 1$1001SUN0024506$12001 $a*Universitext$1210 $aBerlin$cSpringer. 606 $a93E20$xOptimal stochastic control [MSC 2020]$2MF$3SUNC019946 606 $a90B10$xDeterministic network models in operations research [MSC 2020]$2MF$3SUNC021354 606 $a90-XX$xOperations research, mathematical programming [MSC 2020]$2MF$3SUNC025650 606 $a60J20$xApplications of Markov chains and discrete-time Markov processes on general state spaces (social mobility, learning theory, industrial processes, etc.) [MSC 2020]$2MF$3SUNC029367 606 $a90C40$xMarkov and semi-Markov decision processes [MSC 2020]$2MF$3SUNC033686 606 $a90C39$xDynamic programming [MSC 2020]$2MF$3SUNC033782 620 $aCH$dCham$3SUNL001889 700 1$aHinderer$b, Karl$3SUNV088702$0755886 701 1$aRieder$b, Ulrich$3SUNV088703$0512174 701 1$aStieglitz$b, Michael$3SUNV088704$0755887 712 $aSpringer$3SUNV000178$4650 801 $aIT$bSOL$c20201026$gRICA 856 4 $uhttp://dx.doi.org/10.1007/978-3-319-48814-1 912 $aSUN0114646 950 $aBIBLIOTECA CENTRO DI SERVIZIO SBA$d15CONS SBA EBOOK 2208 $e15EB 2208 20180208 996 $aDynamic optimization$91523279 997 $aUNICAMPANIA