LEADER 01970nam0 2200397 i 450 001 SUN0113850 005 20180126100350.178 010 $d0.00 017 70$2N$a978-3-319-24166-1 100 $a20180122d2015 |0engc50 ba 101 $aeng 102 $aCH 105 $a|||| ||||| 200 1 $a*Arithmetically Cohen-Macaulay sets of points in P^1 x P^1$fElena Guardo, Adam Van Tuyl 205 $a[Cham] : Springer, 2015 210 $aVIII$d134 p.$cill. ; 24 cm 215 $aPubblicazione in formato elettronico 410 1$1001SUN0102596$12001 $a*SpringerBriefs in mathematics$1210 $aBerlin$cSpringer$d2011-. 606 $a05A17$xCombinatorial aspects of partitions of integers [MSC 2020]$2MF$3SUNC019789 606 $a41A05$xInterpolation in approximation theory [MSC 2020]$2MF$3SUNC020945 606 $a13C14$xCohen-Macaulay modules [MSC 2020]$2MF$3SUNC022068 606 $a13D02$xSyzygies, resolutions, complexes and commutative rings [MSC 2020]$2MF$3SUNC022491 606 $a13D40$xHilbert-Samuel and Hilbert-Kunz functions; Poincaré series [MSC 2020]$2MF$3SUNC023925 606 $a13H10$xSpecial types (Cohen-Macaulay, Gorenstein, Buchsbaum, etc.) [MSC 2020]$2MF$3SUNC023954 606 $a14M05$xVarieties defined by ring conditions (factorial, Cohen-Macaulay, seminormal)[MSC 2020]$2MF$3SUNC023978 606 $a13A02$xGraded rings [MSC 2020]$2MF$3SUNC029352 620 $aCH$dCham$3SUNL001889 700 1$aGuardo$b, Elena$3SUNV087939$0755672 701 0$aTuyl, Adam : van$3SUNV087940$0755673 712 $aSpringer$3SUNV000178$4650 801 $aIT$bSOL$c20210503$gRICA 856 4 $uhttp://dx.doi.org/10.1007/978-3-319-24166-1 912 $aSUN0113850 950 $aUFFICIO DI BIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$d08CONS e-book 0111 $e08eMF111 20180122 996 $aArithmetically Cohen-Macaulay sets of points in P^1 x P^1$91522810 997 $aUNICAMPANIA