LEADER 02483nam0 2200481 i 450 001 SUN0113731 005 20180125030134.5 010 $d0.00 017 70$2N$a978-3-319-22354-4 100 $a20180118d2015 |0engc50 ba 101 $aeng 102 $aCH 105 $a|||| ||||| 200 1 $a*Stochastic partial differential equations$ean introduction$fWei Liu, Michael Röckner 205 $a[Cham] : Springer, 2015 210 $aVI$d266 p.$cill. ; 24 cm 215 $aPubblicazione in formato elettronico 410 1$1001SUN0024506$12001 $a*Universitext$1210 $aBerlin$cSpringer. 606 $a47-XX$xOperator theory [MSC 2020]$2MF$3SUNC019759 606 $a47J35$xNonlinear evolution equations [MSC 2020]$2MF$3SUNC019761 606 $a35-XX$xPartial differential equations [MSC 2020]$2MF$3SUNC019763 606 $a60J25$xContinuous-time Markov processes on general state spaces [MSC 2020]$2MF$3SUNC019839 606 $a60H05$xStochastic integrals [MSC 2020]$2MF$3SUNC020013 606 $a60-XX$xProbability theory and stochastic processes [MSC 2020]$2MF$3SUNC020428 606 $a60H10$xStochastic ordinary differential equations [MSC 2020]$2MF$3SUNC020682 606 $a34-XX$xOrdinary differential equations [MSC 2020]$2MF$3SUNC021251 606 $a60J60$xDiffusion processes [MSC 2020]$2MF$3SUNC021477 606 $a60H15$xStochastic partial differential equations (aspects of stochastic analysis) [MSC 2020]$2MF$3SUNC021488 606 $a35Q35$xPDEs in connection with fluid mechanics [MSC 2020]$2MF$3SUNC022935 606 $a34G20$xNonlinear differential equations in abstract spaces [MSC 2020]$2MF$3SUNC024637 606 $a34Fxx$xOrdinary differential equations and systems with randomness [MSC 2020]$2MF$3SUNC028778 606 $a35K58$xSemilinear parabolic equations [MSC 2020]$2MF$3SUNC033726 606 $a35K59$xQuasilinear parabolic equations [MSC 2020]$2MF$3SUNC033727 620 $aCH$dCham$3SUNL001889 700 1$aLiu$b, Wei$3SUNV076101$0755646 701 1$aRöckner$b, Michael$3SUNV058417$059656 712 $aSpringer$3SUNV000178$4650 801 $aIT$bSOL$c20210503$gRICA 856 4 $uhttp://dx.doi.org/10.1007/978-3-319-22354-4 912 $aSUN0113731 950 $aUFFICIO DI BIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$d08CONS e-book 0457 $e08eMF457 20180118 996 $aStochastic partial differential equations$91522759 997 $aUNICAMPANIA