LEADER 02351nam0 2200397 i 450 001 SUN0110667 005 20170913113933.385 010 $d0.00 017 70$2N$a978-3-319-51296-9 100 $a20170913d2017 |0engc50 ba 101 $aeng 102 $aCH 105 $a|||| ||||| 200 1 $a*Selberg zeta functions and transfer operators$fMarkus Szymon Fraczek 205 $aCham : Springer, 2017 210 $a XV$d352 p.$cill. ; 24 cm 215 $aPubblicazione in formato elettronico 461 1$1001SUN0102250$12001 $a*Lecture notes in mathematics$v2139$1210 $aBerlin [etc.]$cSpringer$d1964-$1215 $aDal 2011 i volumi sono disponibili in formato elettronico. 606 $a58J50$xSpectral problems; spectral geometry; scattering theory on manifolds [MSC 2020]$2MF$3SUNC021225 606 $a35B25$xSingular perturbations in context of PDEs [MSC 2020]$2MF$3SUNC022796 606 $a58J37$xPerturbations of PDEs on manifolds; asymptotics [MSC 2020]$2MF$3SUNC022871 606 $a33F05$xNumerical approximation and evaluation of special functions [MSC 2020]$2MF$3SUNC029114 606 $a11M35$xHurwitz and Lerch zeta functions [MSC 2020]$2MF$3SUNC029226 606 $a37C30$xFunctional analytic techniques in dynamical systems; zeta functions, (Ruelle-Frobenius) transfer operators, etc. [MSC 2020]$2MF$3SUNC031094 606 $a11M36$xSelberg zeta functions and regularized determinants; applications to spectral theory, Dirichlet series, Eisenstein series, etc. (explicit formulas) [MSC 2020]$2MF$3SUNC033153 606 $a34L16$xNumerical approximation of eigenvalues and of other parts of the spectrum of ordinary differential operators [MSC 2020]$2MF$3SUNC033154 606 $a58J51$xRelations between spectral theory and ergodic theory, e.g. quantum unique ergodicity [MSC 2020]$2MF$3SUNC033155 620 $aCH$dCham$3SUNL001889 700 1$aFraczek$b, Markus S.$3SUNV085443$0739977 712 $aSpringer$3SUNV000178$4650 801 $aIT$bSOL$c20201026$gRICA 856 4 $uhttp://dx.doi.org/10.1007/978-3-319-51296-9 912 $aSUN0110667 950 $aUFFICIO DI BIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$d08CONS e-book $e08LNM2139 20170913 996 $aSelberg zeta functions and transfer operators$91466416 997 $aUNICAMPANIA